Dvorak,
G. J., 1992, “Transformation Field Analysis of In-Elastic Composite Materials,” Proc. R. Soc. London, Ser. A, 437, pp. 311–330.

Dvorak,
G. J., 1993, “Nadai Lecture—Micromechanics of In-Elastic Composite Materials: Theory and Experiment,” ASME J. Eng. Mater. Technol., 115, pp. 330–338.

Dvorak,
G. J., Bahei-El-Din,
Y. A., and Wafa,
A. M., 1994, “The Modeling of Inelastic Composite Materials With the Transformation Field Analysis,” Modell. Simul. Mater. Sci. Eng., 2, pp. 571–585.

Hutchinson,
J. W., 1976, “Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials,” Proc. R. Soc. London, Ser. A, 348, pp. 101–130.

Nemat-Nasser,
S., and Obata,
M., 1986, “Rate-Dependent, Finite Deformation of Polycristals,” Proc. R. Soc. London, Ser. A, A407, pp. 377–404.

Corvasce, F., Lipinski, P., and Berveiller, M., 1990, “The Effects of Thermal, Plastic and Elastic Stress Concentration on the Overall Behavior of Metal Matrix Composites,” *Inelastic Deformation of Composite Materials*, ed. G. J. Dvorak, ed., Springer-Verlag, New York, pp. 389–408.

Tandon,
G. P., and Weng,
G. J., 1988, “A Theory of Particle-Reinforced Plasticity,” ASME J. Appl. Mech., 55, pp. 126–135.

Wakashima,
K., and Tsukamoto,
H., 1988, “A Unified Micromechanical Approach Toward Thermomechanical Tailoring of Metal Matrix Composites,” ISIJ Int., 32, pp. 883–892.

Arsenault,
R. J., and Taya,
M., 1987, “Thermal Residual Stress in Metal Matrix Composite,” Acta Metall., 35, pp. 651–659.

Reifsnider,
K. L., and Gao,
Z., 1991, “A Micromechanics Model for Composites Under Fatigue Loading,” Int. J. Fatigue, 13, pp. 149–156.

Lin,
S. C., Yang,
C., Mura,
T., and Iwakuma,
T., 1992, “Average Elastic-Plastic Behavior of Composite Materials,” Int. J. Solids Struct., (George Hermann 70th Anniversary Issue), 28, pp. 1859–1872.

Qiu,
Y. P., and Weng,
G. J., 1991, “The Influence of Inclusion Shape on the Overall Elastoplastic Behavior of a Two-Phase Isotropic Composite,” Int. J. Solids Struct., 27, pp. 1537–1550.

Zhu,
Z. G., and Weng,
G. J., 1989, “Creep Deformation of Particle-Strengthened Metal-Matrix Composites,” J. Eng. Mater. Technol., 111, pp. 99–105.

Accorsi,
M. L., and Nemat-Nasser,
S., 1986, “Bounds on the Overall Elastic and Instantaneous Elastoplastic Moduli of Periodic Composites,” Mech. Mater., 5, pp. 209–220.

Weissenbek,
E., Böhm,
H. J., and Rammerstorfer,
F. G., 1994, “Micromechanical Investigations of Arrangement Effects in Particle Reinforced Metal Matrix Composites,” Comput. Mater. Sci., 3, pp. 263–278.

Needleman,
A., and Tvergard,
V., 1993, “Comparison of Crystal Plasticity and Isotropic Hardening Predictions for Metal-Matrix Composites,” ASME J. Appl. Mech., 60, pp. 70–76.

Nakamura,
T., and Suresh,
S., 1993, “Effect of Thermal Residual Stresses and Fiber Packing on Deformation of Metal-Matrix Composites,” Acta Metall. Mater., 41, pp. 1665–1681.

Duva,
J. M., 1988, “A Constitutive Description of Nonlinear Materials Containing Voids,” Mech. Mater., 5, pp. 137–144.

Lee,
B. J., and Mear,
M. E., 1991, “Effect of Inclusion Shape on the Stiffness of Non-Linear Two-Phase Composites,” J. Mech. Phys. Solids, 39, pp. 630–649.

Hashin,
Z., 1983, “Analysis of Composite Materials—A Survey,” ASME J. Appl. Mech., 50, pp. 481–505.

Zhu,
Z. G., and Weng,
G. J., 1990, “A Local Theory for the Calculation of Overall Creep Strain of Particle-Reinforced Composites,” Int. J. Plast., 6, pp. 449–469.

Olsson,
M., Giannakopoulos,
A. E., and Suresh,
S., 1995, “Elastoplastic Analysis of Thermal Cycling: Ceramic Particles in a Metallic Matrix,” J. Mech. Phys. Solids, 43, pp. 1639–1671.

Taggart,
D. G., and Bassani,
J. L., 1991, “Elastic-Plastic Behavior of Particle Reinforced Composites—Influence of Residual Stresses,” Mech. Mater., 12, pp. 63–80.

Herrmann, K. P., and Mihovsky, I. M., 1994, “On the Modeling of the Inelastic Thermomechanical Behavior and the Failure of Fibre-Reinforced Composites—A Unified Approach,” *Advances in Applied Mechanics*, K. Z. Markov, ed, World Scientific, Singapore, pp. 141–191.

Buryachenko,
V. A., and Lipanov,
A. M., 1989, “Effective Field Method in the Theory of Perfect Plasticity of Composite Materials,” Prikl. Mekh. i Tekh. Fiz., (3), pp. 149/N155. (in Russian. Engl. Transl.: J. Appl. Mech. Tech. Phys., 1989, 30, pp. 482–487.

Qiu,
Y. P., and Weng,
G. J., 1992, “A Theory of Plasticity for Porous Materials and Particle-Reinforced Composites,” ASME J. Appl. Mech., 59, pp. 261–268.

Ding,
K., and Weng,
G. J., 1998, “Plasticity of Particle-Reinforced Composites With a Ductile Interface,” ASME J. Appl. Mech., 65, pp. 596–601.

Buryachenko,
V. A., 1996, “The Overall Elastoplastic Behavior of Multiphase Materials With Isotropic Components,” Acta Mech., 119, pp. 93–117.

Buryachenko,
V. A., 2001, “Multiparticle Effective Field Method and Related Methods in Micromechanics of Composite Materials,” Appl. Mech. Rev., 54(1), pp. 1–47.

Hashin,
Z., and Shtrikman,
S., 1963, “A Variational Approach to the Theory of the Behavior of Multiphase Materials,” J. Mech. Phys. Solids, 11, pp. 130–140.

Talbot,
D. R. S., and Willis,
J. R., 1985, “Variational Principles for Nonlinear Inhomogeneous Media,” IMA J. Appl. Math., 35, pp. 39–54.

Ponte Castañeda,
P., and Suquet,
P., 1998, “Nonlinear Composites,” Adv. Appl. Mech., 34, pp. 171–302.

Willis,
J. R., 1981, “Variational and Related Methods for the Overall Properties of Composites,” Adv. Appl. Mech., 21, pp. 1–78.

Buryachenko,
V. A., and Rammerstorfer,
F. G., 2001, “On the Thermostatics of Composites With Coated Random Distributed Inclusions,” Int. J. Solids Struct., 37, pp. 3177–3200.

Hervé,
E., and Zaoui,
A., 1993, “N-Layered Inclusion-Based Micromechanical Modeling,” Int. J. Eng. Sci., 31, pp. 1–10.

Bornet,
M., Hervé,
E., Stolz,
C., and Zaoui,
A., 1994, “Self-Consistent Approaches and Strain Heterogeneities in Two-Phase Elastoplastic Materials,” Appl. Mech. Rev., 47(1), pp. S66–S76.

Buryachenko,
V. A., and Rammerstorfer,
F. G., 1999, “On the Thermoelasticity of Random Structure Particulate Composites,” ZAMP, 50, pp. 934–947.

Ortiz,
M., and Popov,
E. P., 1985, “Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations,” Int. J. Numer. Methods Eng., 21, pp. 1561–1576.

Ray,
S. K., and Utku,
S., 1989, “A Numerical Model for the Thermo-elasto-plastic Behavior of a Material,” Int. J. Numer. Methods Eng., 28, pp. 1103–1114.

Nemat-Nasser, S., and Hori, M., 1993, *Micromechanics: Overall Properties of Heterogeneous Materials*. North-Holland, Amsterdam.

Papadopoulos,
P., and Taylor,
R. L., 1994, “On the Application of Multi-step Integration Methods to Infinitesimal Elastoplasticity,” Int. J. Numer. Methods Eng., 37, pp. 3169–3184.

Lagoudas,
D. S., Gavazzi,
A. C., and Nigam,
H., 1991, “Elastoplastic Behavior of Metal Matrix Composites Based on Incremental Plasticity and the Mori-Tanaka Averaging Scheme,” Comput. Mech., 8, pp. 193–203.

Isupov, L. P., 1996, “Constitutive Equations of Plastic Anisotropic Composite Medium,” *IUTAM Symp. Micromech. of Plasticity and Damage of Multiphase Materials*, A. Pineau and Z. Zaoui, eds., Kluwer Academic Publ., Dordrecht, pp. 91–98.