0
TECHNICAL PAPERS

Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials

[+] Author and Article Information
P. Zhang, Y. Huang

Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, IL 61801  

H. Gao

Division of Mechanics and Computation, Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94305  

K. C. Hwang

Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China

J. Appl. Mech 69(4), 454-458 (Jun 20, 2002) (5 pages) doi:10.1115/1.1469002 History: Received March 15, 2001; Revised December 15, 2001; Online June 20, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Iijima,  S., 1991, “Helical Microtubules of Graphitic Carbon,” Nature (London), 354, pp. 56–58.
Ebbesen,  T. W., and Ajayan,  P. M., 1992, “Large-Scale Synthesis of Carbon Nanotubes,” Nature (London), 358, pp. 220–222.
Thess,  A., Lee,  R., Nikolaev,  P., Dai,  H. J., Petit,  P., Rotert,  J., Xu,  C. H., Lee,  Y. H., Kim,  S. G., Rinzler,  A. G., Colbert,  D. T., Scuseria,  G. E., Tomanek,  D., Fischer,  J. E., and Smalley,  R. E., 1996, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, 273, pp. 483–487.
Robertson,  D. H., Brenner,  D. W., and Mintmire,  J. W., 1992, “Energetics of Nanoscale Graphitic Tubules,” Phys. Rev. B, 45, pp. 12592–12595.
Ruoff,  R. S., and Lorents,  D. C., 1995, “Mechanical and Thermal Properties of Carbon Nanotubes,” Carbon, 33, pp. 925–930.
Treacy,  M. M. J., Ebbesen,  T. W., and Gibson,  J. M., 1996, “Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes,” Nature (London), 381, pp. 678–680.
Yakobson,  B. I., Brabec,  C. J., and Bernholc,  J., 1996, “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response,” Phys. Rev. Lett., 76, pp. 2511–2514.
Cornwell,  C. F., and Wille,  L. T., 1997, “Elastic Properties of Single-Walled Carbon Nanotubes in Compression,” Solid State Commun., 101, pp. 555–558.
Lu,  J. P., 1997, “Elastic Properties of Carbon Nanotubes and Nanoropes,” Phys. Rev. Lett., 79, pp. 1297–1300.
Wong,  E. W., Sheehan,  P. E., and Lieber,  C. M., 1997, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, 277, pp. 1971–1975.
Nardelli,  M. B., Yakobson,  B. I., and Bernholc,  J., 1998, “Brittle and Ductile Behavior in Carbon Nanotubes,” Phys. Rev. Lett., 81, pp. 4656–4659.
Nardelli,  M. B., Yakobson,  B. I., and Bernholc,  J., 1998, “Mechanism of Strain Release in Carbon Nanotubes,” Phys. Rev. B, 57, pp. R4277–R4280.
Yakobson,  B. I., 1998, “Mechanical Relaxation and ‘Intramolecular Plasticity’ in Carbon Nanotubes,” Appl. Phys. Lett., 72, pp. 918–920.
Srivastara,  D., Menon,  M., and Cho,  K. J., 1999, “Nanoplasticity of Single-Wall Nanotubes Under Uniaxial Compression,” Appl. Phys. Lett., 83, pp. 2973–2976.
Lourie,  O., and Wagner,  H. D., 1998, “Transmission Electron Microscopy Observations of Fracture of Single-Wall Carbon Nanotubes Under Axial Tension,” Appl. Phys. Lett., 73, pp. 3527–3529.
Yakobson,  B. I., and Smalley,  R. E., 1997, “Fullerene Nanotubes: C-1000000 and Beyond,” Am. Sci., 85, pp. 324–337.
Tersoff,  J., 1988, “New Empirical Approach for the Structure and Energy of Covalent Systems,” Phys. Rev. B, 37, pp. 6991–7000.
Brenner,  D. W., 1990, “Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films,” Phys. Rev. B, 42, pp. 9458–9471.
Yakobson,  B. I., Campbell,  M. P., Brabec,  C. J., and Bernholc,  J., 1997, “High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes,” Comput. Mater. Sci., 8, pp. 341–348.
Friesecke,  G., and James,  R. D., 1999, “A Scheme for the Passage From Atomic to Continuum Theory for Thin Films, Nanotubes and Nanorods,” J. Mech. Phys. Solids, 48, pp. 1519–1540.
Iijima,  S., Brabec,  C., Maiti,  A., and Bernholc,  J., 1996, “Structural Flexibility of Carbon Nanotubes,” J. Chem. Phys., 104, pp. 2089–2092.
Chopra,  N. G., Benedict,  L. X., Crespi,  V. H., Cohen,  M. L., Louie,  S. G., and Zettl,  Z., 1995, “Fully Collapsed Carbon Nanotubes,” Nature (London), 377, pp. 135–138.
Despres,  J. F., Daguerre,  E., and Lafdi,  K., 1995, “Flexibility of Graphene Layers in Carbon Nanotubes,” Carbon, 33, pp. 87–89.
Gao,  H. J., and Klein,  P., 1998, “Numerical Simulation of Crack Growth in an Isotropic Solid With Randomized Internal Cohesive Bonds,” J. Mech. Phys. Solids, 46, pp. 187–218.
Milstein,  F., 1980, “Review: Theoretical Elastic Behavior at Large Strains,” J. Mater. Sci., 15, pp. 1071–1084.
Tadmor,  E. B., Ortiz,  M., and Phillips,  R., 1996, “Quasicontinuum Analysis of Defects in Solids,” Philos. Mag. A, 73, pp. 1529–1563.
LeSar,  R., Najafabadi,  R., and Srolovitz,  D. J., 1989, “Finite-Temperature Defect Properties From Free-Energy Minimization,” Phys. Rev. Lett., 63, pp. 624–627.

Figures

Grahic Jump Location
A multiscale framework to establish a continuum theory incorporating the interatomic potential V
Grahic Jump Location
A schematic diagram to show the coordinate system on the nanotube surface; eθ and eZ are unit vectors in the circumferential and axial directions, respectively, and ϕ is the angle between the bond and the circumferential direction

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In