Nano Electro Mechanics of Semiconducting Carbon Nanotube

[+] Author and Article Information
S. Peng, K. Cho

Division of Mechanics and Computation, Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94305

J. Appl. Mech 69(4), 451-453 (Jun 20, 2002) (3 pages) doi:10.1115/1.1469003 History: Received March 15, 2001; Revised October 30, 2001; Online June 20, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London.
Iijima,  S., 1991, “Helical Microtubules of Graphitic Carbon,” Nature (London), 354, pp. 56–58.
Treacy,  M. M. J., Ebbesen,  T. W., and Gibson,  J. M., 1996, “Exceptionally High Yong’s Modulus Observed for Individual Carbon Nanotubes,” Nature (London), 381, pp. 678–680.
Falvo,  M. R., Clary,  G. J., Taylor,  R. M., Chi,  V., Brooks,  F. P., Washburn,  S., and Superfine,  R., 1997, “Bending and Buckling of Carbon Nanotubes Under Large Strain,” Nature (London), 389, pp. 582–584.
Wong,  E. W., Sheehan,  P. E., and Lieber,  C. M., 1997, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, 277, pp. 1971–1974.
Charlier,  J. C., and Issi,  J. P., 1998, “Electronic Structure and Quantum Transport in Carbon Nanotubes,” Appl. Phys. A: Mater. Sci. Process., 67, pp. 79–87.
Hamada,  N., Sawada,  S., and Oshiyama,  A., 1992, “New One-Dimensional Conductors: Graphitic Microtubules,” Phys. Rev. Lett., 68, pp. 1579–1581.
Heyd,  R., Charlier,  A., and McRae,  E., 1997, “Uniaxial-Stress Effects on the Electronic Properties of Carbon Nanotubes,” Phys. Rev. B, 55, pp. 6820–6824.
Lourie,  O., Cox,  D. M., and Wagner,  H. D., 1998, “Buckling and Collapse of Embedded Carbon Nanotubes,” Phys. Rev. Lett., 81, pp. 1638–1641.
Yakobson,  B. I., and Smalley,  R. E., 1997, “Fullerene Nanotubes: C 1,000,000 and Beyond,” Am. Sci., 85, pp. 324–337.
Thomas,  W. T., Zhou,  C. W., Alexseyev,  L., Kong,  J., Dai,  H. J., Lei,  L., Jayanthi,  C. S., Tang,  M. J., and Wu,  S. Y., 2000, “Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation,” Nature (London), 405, pp. 769–772.
Rochefort,  A., Salahub,  D. R., and Avouris,  P., 1998, “The Effect of Structural Distortions on the Electronic Structure of Carbon Nanotubes,” Chem. Phys. Lett., 297, pp. 45–50.
Iijima,  S., 1996, “Structural Flexibility of Carbon Nanotubes,” J. Chem. Phys., 104, pp. 2089–2092.
Mazzoni,  M. S. C. and Chacham,  H., 2000, “Bandgap Closure of a Flattened Semiconductor Carbon Nanotubes: A First-Principle Study,” Appl. Phys. Lett., 76, pp. 1561–1563.
Payne,  M. C. , Teter,  M. P., Allan,  D. C., and Joannopoulos,  J. D., 1992, “Iterative Minimization Techniques for ab initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients,” Rev. Mod. Phys., 64, pp. 1045–1096.
Srivestava,  D., Menon,  M., and Cho,  K. J., 1999, “Nanoplasticity of Single-Wall Carbon Nanotubes Under Uniaxial Compression,” Phys. Rev. Lett., 83, pp. 2973–2976.
Peng,  S., and Cho,  K. J., 2000, “Chemical Control of Nanotube Electronics,” Nanotechnology, 11, pp. 57–60.


Grahic Jump Location
Description of flatness. The degree of flattening is characterized by the parameter η=(D0−d)/D0.
Grahic Jump Location
Flattening of a (8, 0) carbon nanotube with different degrees of deformation up to 40% flattening
Grahic Jump Location
Energy gap as a function of the flatness. Region 1 shows a band gap closing corresponding to a semiconductor-metal transition, and Region 2 shows bandgap reopening leading to metal-semiconductor transition.
Grahic Jump Location
Electronic band structures at different degrees of flattening deformation. Negative energies correspond to valence band state, and positive energies correspond to conduction band states.
Grahic Jump Location
Strain energy per atom as a function of flattening, η



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In