0
TECHNICAL PAPERS

Moment Lyapunov Exponents of a Two-Dimensional Viscoelastic System Under Bounded Noise Excitation

[+] Author and Article Information
W.-C. Xie

Solid Mechanics Division, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

J. Appl. Mech 69(3), 346-357 (May 03, 2002) (12 pages) doi:10.1115/1.1445143 History: Received April 24, 2001; Revised October 02, 2001; Online May 03, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Moment Lyapunov exponent Λx(t)(p). ε=0.05, μ=1, κ=5, γ=0, σ=0.5.
Grahic Jump Location
Moment Lyapunov exponent Λx(t)(p). ε=0.05, μ=1, κ=5, γ=0, σ=1.
Grahic Jump Location
Moment Lyapunov exponent Λx(t)(p). ε=0.05, μ=1, κ=5, γ=1, σ=0.25.
Grahic Jump Location
Moment Lyapunov exponent Λx(t)(p). ε=0.05, μ=1, κ=5, γ=1, σ=0.5.
Grahic Jump Location
Moment Lyapunov exponent Λx(t)(p). ε=0.05, μ=1, κ=5, γ=1, σ=1.
Grahic Jump Location
Moment Lyapunov exponent Λq(τ)(p). ε=0.05, c0=1,p0=0,ω0=1,μ0=1,κ0=5,γ0=0,σ0=0.5.
Grahic Jump Location
Moment Lyapunov exponent Λq(τ)(p). ε=0.05, c0=1,p0=0,ω0=1,μ0=1,κ0=5,γ0=1,σ0=0.5.
Grahic Jump Location
Lyapunov exponent λq(τ). ε=0.05, c0=0,p0=0,ω0=1,κ0=5,γ0=1,σ0=0.5.
Grahic Jump Location
Lyapunov exponent λq(τ). ε=0.05, c0=0,p0=0,ω0=1,κ0=5,γ0=0.5,σ0=0.5.
Grahic Jump Location
Lyapunov exponent λq(τ). ε=0.05, c0=0,p0=0,ω0=1,κ0=5,γ0=0,σ0=0.5.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In