0
TECHNICAL PAPERS

Random Response Analysis of Preisach Hysteretic Systems With Symmetric Weight Distribution

[+] Author and Article Information
Y. Q. Ni

Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong  

Z. G. Ying

Department of Mechanics, Zhejiang University, Hangzhou 310027, P. R. China  

J. M. Ko

Faculty of Construction and Land Use, The Hong Kong Polytechnic University, Kowloon, Hong Kong

J. Appl. Mech 69(2), 171-178 (Apr 18, 2000) (8 pages) doi:10.1115/1.1428333 History: Received April 18, 2000
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Preisach,  F., 1935, “Über die Magnetische Nachwirkung,” Z. Phys., 94, pp. 277–302 (in German).
Krasnoselskii, M. A., and Pokrovskii, A. V., 1989, Systems With Hysteresis, Springer, Berlin.
Mayergoyz, I. D., 1991, Mathematical Models of Hysteresis, Springer-Verlag, New York.
Visintin, A., 1994, Differential Models of Hysteresis, Springer-Verlag, Berlin.
Hughes, D., and Wen, J. T., 1995, “Preisach Modeling and Compensation for Smart Material Hysteresis,” Active Materials and Smart Structures, Vol. 2427, G. L. Anderson and D. C. Lagoudas, eds., SPIE, Bellingham, WA, pp. 50–64.
Ni,  Y. Q., Ko,  J. M., and Wong,  C. W., 1999, “Nonparametric Identification of Nonlinear Hysteretic Systems,” J. Eng. Mech., 125, pp. 206–215.
Freeman, A. R., and Joshi, S. P., 1996, “Numerical Modeling of PZT Nonlinear Electromechanical Behavior,” Smart Structures and Materials 1996: Mathematics and Control in Smart Structures, Vol. 2715, V. V. Varadan and J. Chandra, eds., SPIE, Bellingham, WA, pp. 602–613.
Bertotii,  G., and Basso,  V., 1993, “Considerations on the Physical Interpretation of the Preisach Model of Ferromagnetic Hysteresis,” J. Appl. Phys., 73, pp. 5827–5829.
Sreeram, P. N., and Naganathan, N. G., 1994, “Hysteresis Prediction for Piezoceramic Actuator Systems Using Preisach Models,” Smart Structures and Materials 1994: Smart Materials, Vol. 2189, V. V. Varadan, ed., SPIE, Bellingham, WA, pp. 14–25.
Ge,  P., and Jouaneh,  M., 1995, “Modeling Hysteresis in Piezoceramic Actuators,” Precis. Eng., 17, pp. 211–221.
Hughes,  D., and Wen,  J. T., 1997, “Preisach Modeling of Piezoceramic and Shape Memory Alloy Hysteresis,” Smart Mater. Struct., 6, pp. 287–300.
Lagoudas,  D. C., and Bhattacharyya,  A., 1997, “On the Correspondence Between Micromechanical Models for Isothermal Pseudoelastic Response of Shape Memory Alloys and the Preisach Model for Hysteresis,” Math. Mech. Solids, 2, pp. 405–440.
Adly,  A. A., Mayergoyz,  I. D., and Bergqvist,  A., 1991, “Preisach Modeling of Magnetostrictive Hysteresis,” J. Appl. Phys., 69, pp. 5777–5779.
Schafer,  J., and Janocha,  H., 1995, “Compensation of Hysteresis in Solid-State Actuators,” Sens. Actuators A, 49, pp. 97–102.
Lubarda,  V. A., Sumarac,  D., and Krajcinovic,  D., 1993, “Preisach Model and Hysteretic Behaviour of Ductile Materials,” Eur. J. Mech. A/Solids, 12, pp. 445–470.
Sumarac,  D., and Stosic,  S., 1996, “The Preisach Model for the Cyclic Bending of Elasto-Plastic Beams,” Eur. J. Mech. A/Solids, 15, pp. 155–172.
Wang, J. Y., Ni, Y. Q., and Ko, J. M., 1999, “Transient Dynamic Response of Preisach Hysteretic Systems,” A New Advance in Seismic Isolation, Energy Dissipation and Control of Structures, F. Zhou and B. F. Spencer, Jr., eds., Seismological Press, Beijing, China, pp. 378–385.
Ni, Y. Q., Wang, J. Y., and Ko, J. M., 1999, “Advanced Method for Modelling Hysteretic Behaviour of Semi-Rigid Joints,” Advances in Steel Structures, Vol. 1, S. L. Chan and J. G. Teng, eds., Elsevier Science Ltd., Oxford, UK, pp. 331–338.
Lo, H. R., Hammond, J. K., and Sainsbury, M. G., 1988, “Nonlinear System Identification and Modelling with Application to an Isolator with Hysteresis,” Proceedings of the 6th International Modal Analysis Conference, Vol. 2, Society of Experimental Mechanics, Bethel, CT, pp. 1453–1459.
Mayergoyz,  I. D., and Korman,  C. E., 1991, “Preisach Model With Stochastic Input as a Model for Viscosity,” J. Appl. Phys., 69, pp. 2128–2134.
Mayergoyz,  I. D., and Korman,  C. E., 1994, “The Preisach Model With Stochastic Input as a Model for Aftereffect,” J. Appl. Phys., 75, pp. 5478–5480.
Korman,  C. E., and Mayergoyz,  I. D., 1997, “Review of Preisach Type Models Driven by Stochastic Inputs as a Model for After-Effect,” Physica B, 233, pp. 381–389.
Verdi,  C., and Visintin,  A., 1989, “Numerical Approximation of the Preisach Model for Hysteresis,” Math. Modell. Numer. Anal., 23, pp. 335–356.
Yu, Y., Xiao, Z., Lin, E.-B., and Naganathan, N., 1999, “Wavelet Implementation of Preisach Model of Hysteresis,” Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, Vol. 3667, V. V. Varadan, ed., SPIE, Bellingham, WA, pp. 776–784.
Wen,  Y. K., 1980, “Equivalent Linearization for Hysteretic Systems Under Random Excitation,” ASME J. Appl. Mech., 47, pp. 150–154.
Korman,  C. E., and Mayergoyz,  I. D., 1995, “Switching as an Exit Problem,” IEEE Trans. Magn., 31, pp. 3545–3547.
Ni, Y. Q., Ying, Z. G., and Ko, J. M., 2000, “Nonlinear Random Vibration of Preisach Hysteretic Systems,” Proceedings of the International Conference on Advanced Problems in Vibration Theory and Applications, J. H. Zhang and X. N. Zhang, eds., Science Press, Beijing, China, pp. 568–574.
Galinaitis, W. S., and Rogers, R. C., 1997, “Compensation for Hysteresis Using Bivariate Preisach Models,” Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, Vol. 3039, V. V. Varadan and J. Chandra, eds., SPIE, Bellingham, WA, pp. 538–647.
Torre,  E. D., and Vajda,  F., 1997, “Effect of Apparent Reversibility on Parameter Estimation,” IEEE Trans. Magn., 33, pp. 1085–1092.

Figures

Grahic Jump Location
Relay hysteresis operator
Grahic Jump Location
Time sequence of input x(t)
Grahic Jump Location
Preisach plane with interface L(t)
Grahic Jump Location
Single-degree-of-freedom nonlinear hysteretic system
Grahic Jump Location
Mean square response versus excitation intensity D
Grahic Jump Location
Mean square displacement versus linear stiffness k
Grahic Jump Location
Mean square velocity versus stiffness k
Grahic Jump Location
Mean square displacement versus weighting parameter σ
Grahic Jump Location
Mean square velocity versus weighting parameter σ
Grahic Jump Location
Mean square displacement versus weighting parameter ν
Grahic Jump Location
Mean square velocity versus weighting parameter ν
Grahic Jump Location
Mean square displacement versus weighting parameter β0
Grahic Jump Location
Mean square velocity versus weighting parameter β0
Grahic Jump Location
Mean square response versus weighting parameter σ(ν=0)
Grahic Jump Location
Mean square response versus weighting parameter β0(ν=0)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In