0
TECHNICAL PAPERS

Multimode Approach to Nonlinear Supersonic Flutter of Imperfect Circular Cylindrical Shells

[+] Author and Article Information
M. Amabili

Dipartimento di Ingegneria Industriale, Università di Parma, Parco Area delle Scienze 181/A, Parma I-43100, Italy

F. Pellicano

Dipartimento di Scienze dell’ Ingegneria, Università di Modena e Reggio Emilia, Via Campi 213/B, Modena, I-41100, Italy

J. Appl. Mech 69(2), 117-129 (Oct 01, 2001) (13 pages) doi:10.1115/1.1435366 History: Received March 07, 2001; Revised October 01, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ashley,  H., and Zartarian,  G., 1956, “Piston Theory—A New Aerodynamic Tool for the Aeroelastician,” J. Aeronaut. Sci., 23, pp. 1109–1118.
Dowell,  E. H., 1966, “Flutter of Infinitely Long Plates and Shells. Part II: Cylindrical Shell,” AIAA J., 4, pp. 1510–1518.
Olson,  M. D., and Fung,  Y. C., 1966, “Supersonic Flutter of Circular Cylindrical Shells Subjected to Internal Pressure and Axial Compression,” AIAA J., 4, pp. 858–864.
Barr,  G. W., and Stearman,  R. O., 1970, “Influence of a Supersonic Flowfield on the Elastic Stability of Cylindrical Shells,” AIAA J., 8, pp. 993–1000.
Ganapathi,  M., Varadan,  T. K., and Jijen,  J., 1994, “Field-Consistent Element Applied to Flutter Analysis of Circular Cylindrical Shells,” J. Sound Vib., 171, pp. 509–527.
Horn,  W., Barr,  G. W., Carter,  L., and Stearman,  R. O., 1974, “Recent Contributions to Experiments on Cylindrical Shell Panel Flutter,” AIAA J., 12, pp. 1481–1490.
Dowell,  E. H., 1970, “Panel Flutter: A Review of the Aeroelastic Stability of Plates and Shells,” AIAA J., 8, pp. 385–399.
Bismarck-Nasr,  M. N., 1992, “Finite Element Analysis of Aeroelasticity of Plates and Shells,” Appl. Mech. Rev., 45, pp. 461–482.
Mei,  C., Abel-Motagaly,  K., and Chen,  R., 1999, “Review of Nonlinear Panel Flutter at Supersonic and Hypersonic Speeds,” Appl. Mech. Rev., 52, pp. 321–332.
Librescu,  L., 1965, “Aeroelastic Stability of Orthotropic Heterogeneous Thin Panels in the Vicinity of the Flutter Critical Boundary. Part I: Simply Supported Panels,” Journal de Mécanique 4, pp. 51–76.
Librescu,  L., 1967, “Aeroelastic Stability of Orthotropic Heterogeneous Thin Panels in the Vicinity of the Flutter Critical Boundary. Part II.” Journal de Mécanique 6, pp. 133–152.
Librescu, L., 1975, Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures, Noordhoff, Leiden, The Netherlands.
Olson,  M. D., and Fung,  Y. C., 1967, “Comparing Theory and Experiment for the Supersonic Flutter of Circular Cylindrical Shells,” AIAA J., 5, pp. 1849–1856.
Evensen, D. A., and Olson, M. D., 1967, “Nonlinear Flutter of a Circular Cylindrical Shell in Supersonic Flow,” NASA TN D-4265.
Evensen,  D. A., and Olson,  M. D., 1968, “Circumferentially Travelling Wave Flutter of a Circular Cylindrical Shell,” AIAA J., 6, pp. 1522–1527.
Evensen, D. A., 1967, “Nonlinear Flexural Vibrations of Thin-Walled Circular Cylinders,” NASA TN D-4090.
Olsson,  U., 1978, “Supersonic Flutter of Heated Circular Cylindrical Shells With Temperature-Dependent Material Properties,” AIAA J., 16, pp. 360–362.
Carter,  L. L., and Stearman,  R. O., 1968, “Some Aspects of Cylindrical Shell Panel Flutter,” AIAA J., 6, pp. 37–43.
Barr,  G. W., and Stearman,  R. O., 1969, “Aeroelastic Stability Characteristics of Cylindrical Shells Considering Imperfections and Edge Constraint,” AIAA J., 7, pp. 912–919.
Amabili,  M., and Pellicano,  F., 2001, “Nonlinear Supersonic Flutter of Circular Cylindrical Shells,” AIAA J., 39, pp. 564–573.
Bolotin, V. V., 1963, Nonconservative Problems of the Theory of Elastic Stability, MacMillan, New York.
Dowell,  E. H., 1969, “Nonlinear Flutter of Curved Plates,” AIAA J., 7, pp. 424–431.
Dowell,  E. H., 1970, “Nonlinear Flutter of Curved Plates, II,” AIAA J., 8, pp. 259–261.
Vol’mir,  S., and Medvedeva,  S. V., 1973, “Investigation of The Flutter of Cylindrical Panels in a Supersonic Gas Flow,” Sov. Phys. Dokl., 17, pp. 1213–1214.
Krause, H., and Dinkler, D., 1998, “The Influence of Curvature on Supersonic Panel Flutter,” Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, AIAA, Washington, DC, pp. 1234–1240.
Bein, T., Friedmann, P. P., Zhong, X., and Nydick, I., 1993, “Hypersonic Flutter of a Curved Shallow Panel With Aerodynamic Heating,” 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Apr. 19–22, La Jolla, CA, AIAA, Washington, DC, pp. 1–15.
Nydick, I., Friedmann, P. P., and Zhong, X., 1995, “Hypersonic Panel Flutter Studies on Curved Panels,” Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Vol. 5, Apr. 10–13, New Orleans, LA, AIAA, Washington, DC, pp. 2995–3011.
Anderson, W. J., 1962, “Experiments on the flutter of flat and slightly curved panels at Mach Number 2.81,” AFOSR 2996, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA.
Amabili,  M., Pellicano,  F., and Paı̈doussis,  M. P., 1999, “Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part I: Stability,” J. Sound Vib., 225, pp. 655–699.
Amabili,  M., Pellicano,  F., and Paı̈doussis,  M. P., 2001, “Non-Linear Stability of Circular Cylindrical Shells in Annular and Unbounded Axial Flow,” ASME J. Appl. Mech., 68, pp. 827–834.
El Chebair,  A., Paı̈doussis,  M. P., and Misra,  A. K., 1989, “Experimental Study of Annular-Flow-Induced Instabilities of Cylindrical Shells,” J. Fluids Struct., 3, pp. 349–364.
Amabili, M., and Paı̈doussis, M. P., 2001, “Review of Studies on Geometrically Nonlinear Vibrations and Dynamics of Circular Cylindrical Shells and Panels, With and Without Fluid-Structure Interaction,” Appl. Mech. Rev., submitted for publication.
Watawala,  L., and Nash,  W. A., 1983, “Influence of Initial Geometric Imperfections on Vibrations of Thin Circular Cylindrical Shells,” Comput. Struct., 16, pp. 125–130.
Hui,  D., 1984, “Influence of Geometric Imperfections and In-Plane Constraints on Nonlinear Vibrations of Simply Supported Cylindrical Panels,” ASME J. Appl. Mech., 51, pp. 383–390.
Yamaki, N., 1984, Elastic Stability of Circular Cylindrical Shells, North-Holland, Amsterdam.
Dowell,  E. H., and Ventres,  C. S., 1968, “Modal Equations for the Nonlinear Flexural Vibrations of a Cylindrical Shell,” Int. J. Solids Struct., 4, pp. 975–991.
Amabili,  M., Pellicano,  F., and Paı̈doussis,  M. P., 1999, “Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid, Part II: Large Amplitude Vibrations Without Flow,” J. Sound Vib., 228, pp. 1103–1124.
Amabili,  M., Pellicano,  F., and Paı̈doussis,  M. P., 2000, “Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid, Part III: Truncation Effect Without Flow and Experiments,” J. Sound Vib., 237, pp. 617–640.
Wolfram, S., 1999, The Mathematica Book, 4th Ed., Cambridge University Press, Cambridge, UK.
Krumhaar,  H., 1963, “The Accuracy of Linear Piston Theory When Applied to Cylindrical Shells,” AIAA J., 1, pp. 1448–1449.
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B., and Wang, X., 1998, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont), Concordia University, Montreal, Canada.
Wiggins, S., 1990, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York.
Pellicano, F., Amabili, M., and Paı̈doussis, M. P., 2001, “Effect of the Geometry on the Nonlinear Vibration of Circular Cylindrical Shells,” Int. J. Non-Linear Mech., submitted for publication.
Hutchinson,  J., 1965, “Axial Buckling of Pressurized Imperfect Cylindrical Shells,” AIAA J., 3, pp. 1461–1466.

Figures

Grahic Jump Location
Amplitude of oscillatory solutions versus the freestream static pressure; n=23, linear piston theory. –, stable branches; ----, unstable branches. (a) Maximum amplitude of the first longitudinal mode A1,n(t)/h; (b) maximum amplitude of the first longitudinal mode B1,n(t)/h; (c) maximum amplitude of the second longitudinal mode A2,n(t)/h; (d) maximum amplitude of the second longitudinal mode B2,n(t)/h; (e) maximum amplitude of the third longitudinal mode A3,n(t)/h; (f ) maximum amplitude of the third longitudinal mode B3,n(t)/h; (g) maximum amplitude of the fourth longitudinal mode A4,n(t)/h; (h) maximum amplitude of the fourth longitudinal mode B4,n(t)/h; (i) maximum amplitude of the first mode with 2n circumferential waves A1,2n(t)/h; (j) maximum amplitude of the first axisymmetric mode A1,0(t)/h.
Grahic Jump Location
Time histories of the shell for p=3800 Pa;n=23, linear piston theory. (a) Amplitude of the first longitudinal mode A1,n(t)/h; (b) amplitude of the first longitudinal mode B1,n(t)/h; (c) amplitude of the second longitudinal mode A2,n(t)/h; (d) amplitude of the second longitudinal mode B2,n(t)/h; (e) amplitude of the first longitudinal mode with 2n circumferential waves A1,2n(t)/h; (f ) amplitude of the axisymmetric mode A1,0(t)/h.
Grahic Jump Location
Flutter response of the shell for p=7000 Pa;n=23, linear piston theory. (a) Time history of the first longitudinal mode A1,n(t)/h; (b) phase-plane plot of the first longitudinal mode A1,n(t)/h; (c) spectrum of the first longitudinal mode A1,n(t)/h.
Grahic Jump Location
Nondimensional flutter amplitude versus nondimensional flutter frequency; ω1,n=2π×226.3 rad/s. –, stable branches; ----, unstable branches. (a) Amplitude of the first longitudinal mode with n circumferential waves; (b) amplitude of the first longitudinal mode with 2n circumferential waves.
Grahic Jump Location
Amplitude of oscillatory solutions versus the freestream static pressure; n=23. –, third-order piston theory; ----, linear piston theory.
Grahic Jump Location
Critical freestream static pressure versus the pressure differential across the shell skin pm for three different numbers of circumferential waves: ----, n=22; –, n=23, ⋅-⋅-⋅-⋅, n=24
Grahic Jump Location
Critical freestream static pressure versus the pressure differential across the shell skin pm. –, theoretical results for imperfect shell, B̃1,24=0.18h,Ã3,24=0.0966h,Ã1,0=2.46h, and n=24; the gray area delimited by ⋅-⋅-⋅-⋅ represents the experimental data (19).
Grahic Jump Location
Amplitude of oscillatory solutions versus the freestream static pressure; n=24,pm=5000 Pa; imperfect shell (B̃1,24=0.18h,Ã3,24=0.0966h,Ã1,0=2.46h), linear piston theory. –, stable branches; ----, unstable branches. (a) Maximum amplitude of the first longitudinal mode A1,n(t)/h; (b) maximum amplitude of the first longitudinal mode B1,n(t)/h; (c) maximum amplitude of the second longitudinal mode A2,n(t)/h; (d) maximum amplitude of the second longitudinal mode B2,n(t)/h.
Grahic Jump Location
Flutter response of the shell for p=6500 Pa;n=24,pm=5000 Pa; imperfect shell (B̃1,24=0.18h,Ã3,24=0.0966h,Ã1,0=2.46h), linear piston theory. (a) Time history of the first longitudinal mode A1,n(t)/h; (b) experimental time history (3); (c) spectrum of the first longitudinal mode A1,n(t)/h; (d) experimental spectrum (3).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In