Sih, G. C., 1962, “On the Singular Character of Thermal Stress Near a Crack Tip,” Trans. ASME, J. Appl. Mech., 29 , pp. 587–588.

Florence, A. L., and Goodier, J. N., 1960, “Thermal Stress Due to Disturbances of Uniform Heat Flow by an Insulated Ovaloid Hole,” Trans. ASME, J. Appl. Mech., 27 , pp. 635–639.

Olesiak, Z., and Sneddon, I. N., 1959, “The Distribution of Thermal Stress in an Infinite Elastic Solid Containing a Penny-Shaped Crack,” Arch. Ration. Mech. Anal., 4 , pp. 238–254.

[CrossRef]Brown, E. J., and Erdogan, F., 1968, “Thermal Stress in Bonded Materials Containing Cuts on the Interface,” Int. J. of Basic Science, 6 , pp. 517–529.

[CrossRef]Kassir, M. K., and Sih, G. C., 1968, “Thermal Stress in a Solid Weakened by an External Circular Crack,” Int. J. Solids Struct., 5 , pp. 351–367.

[CrossRef]Kassir, M. K., and Sih, G. C., 1971, “Thermal Stress in a Solid Containing Parallel Circular Crack,” Appl. Sci. Res., 25 , pp. 262–280.

[CrossRef]Lee, K. Y., and Shul, C. W., 1991 “Determination of Stress Intensity Factors for an Interface Crack Under Vertical Uniform Heat Flow,” Eng. Fract. Mech., 40 (6), pp. 1067–1074.

[CrossRef]O’Hara, P., Duarte, C., and Eason, T., 2009, “Generalized Finite Element Analysis of Three-Dimensional Heat Transfer Problems Exhibiting Sharp Thermal Gradients,” Comput. Methods Appl. Mech. Eng., 198 , pp. 1857–1871.

[CrossRef]Wilson, W. K., and Yu, I. W., 1979, “The Use of the J Integral in Thermal Stress Crack Problem,” Int. J. Fract., 15 , pp. 377–387.

Hellen, T. K., and Cesari, F., 1979, “On the Solution of Center Cracked Plate with a Quadratic Thermal Gradient,” Eng. Fract. Mech.12 , pp. 469–478.

[CrossRef]Emmel, E., and Stamm, H., 1985, “Calculation of Stress Intensity Factors of Thermal Loaded Cracks Using the Finite Element Method,” Int. J. Pressure Vessels Piping, 19 , pp. 1–17.

[CrossRef]Kim, D., Duarte, C., and Sobh, N., 2011, “Parallel Simulations of Three-Dimensional Cracks Using the Generalized Finite Element Method,” Comput. Mech., 47 , pp. 265–282.

Wilson, R. I., and Meguid, S. A., 1995, “On the Determination of Mixed mode Stress Intensity Factors of an Angled Cracks in a Disc Using FEM,” Finite Elem. Anal. Design, 18 , pp. 433–438.

[CrossRef]Yuuki, R., and Cho, S. B., 1989, “Efficient Boundary Element Analysis of Stress Intensity Factors for Interface Cracks in Dissimilar Materials,” Eng. Fract. Mech., 34 , pp. 179–188.

[CrossRef]Sun, C. T., and Jih, C. J., 1987, “On Strain Energy Release Rates for Interfacial Cracks in Bi-Material Media,” Eng. Fract. Mech., 28 , pp. 13–20.

[CrossRef]Sun, C. T., and Quin, W., 1997, “The Use of Finite Extension Strain Energy Release Rates in Fracture of Interfacial Cracks,” Int. J. Solids Struct., 34 , pp. 2595–2609.

[CrossRef]Sun, C. T., and Ikeda, T., 2001, “Stress Intensity Factor Analysis for an Interface Crack Between Dissimilar Isotropic Materials Under Thermal Stress,” Int. J. Fract., 111 , pp. 229–249.

[CrossRef]Banks-Sills, L., and Dolev, O., 2004, “The Conservative M Integral for Thermal-Elastic Problems,” Int. J. Fract., 125 , pp. 149–170.

[CrossRef]Bueckner, H. F., 1970, “A Novel Principle for the Computation of Stress Intensity Factor,” ZAMM, 50 , pp. 529–546.

Rice, J. R., 1972, “Some Remarks on Elastic Crack-Tip Stress Fields,” Int. J. Solid Struct., 8 , pp. 751–758.

[CrossRef]Bueckner, H. F., 1973. “Field Singularities and Related Integral Representation,” Mech. Fract., 1 , pp. 239–314.

Paris, P. C., and McMeeking, R. M., 1975, “Efficient Finite Element Methods for Stress Intensity Factors Using Weight Functions,” Int. J. Fract., 11 , pp. 354–358.

[CrossRef]Vanderglas, M. L., 1978, “A Stiffness Derivative Finite element Technique for Determination of Influence Functions,” Int. J. Fract., 14 , pp. R291–294.

Parks, D. M., and Kamenetzky, E. M., 1979, “Weight Functions From Virtual Crack Extension,” Int. J. Numer. Methods Eng., 14 , pp. 1693–1705.

[CrossRef]Bortman, Y., and Banks-Sills, L., 1983, “An Extended Weight Function Method for Mixed-Mode Elastic Crack Analysis,” Trans. ASME, J. Appl. Mech., 50 , pp. 907–909.

[CrossRef]Rice, J. R., 1985, “First-Order Variation in Elastic Fields Due to Variation in Location of a Planar Crack Front,” Trans. ASME, J. Appl. Mech., 52 , pp. 571–579.

[CrossRef]Rice, J. R., 1988, “Elastic Fracture Mechanics Concepts for Interfacial Cracks,” Trans. ASME, J. Appl. Mech., 55 , pp. 98–105.

[CrossRef]Sham, T. L., 1987, “A Unified Finite Element Method for Determining Weight Functions in Two and Three Dimensions,” Int. J. Solids Struct., 23 , pp. 1357–1372.

[CrossRef]Bueckner, H. F., 1987, “Weight Functions and Fundamental Fields for the Penny-Shaped and the Half-Plane Crack in Three-Space,” Int. J. Solids Struct., 23 , p. 5793.

[CrossRef]Sham, T. L., and Zhou, Y., 1989, “Weight Functions in Two-Dimensional Bodies with Arbitrary Anisotropy,” Int. J. Fract., 40 , pp. 13–41.

[CrossRef]Wu, X. R., and Carlsson, J., 1991, "*Weight Functions and Stress Intensity Factor Solutions*"Pergamon, Oxford.

Heaton, M. D., 1976, "*“On the Calculation of Stress Intensity Factors Due to Thermal and Residual Stress Fields,”*" CEGB Research Report NW/SSD/RR/158.

Tsai, C. H., and Ma, C. C., 1992, “Thermal Weight Function of Cracked Bodies Subjected to Thermal Loading,” Eng. Fract. Mech., 41 (1), pp. 27–40.

[CrossRef]Lu, Y. L., Huang, X. P., Lu, C. D., and Weng, X. H., 2004, “A Novel Technique for Determination of Histories of SIFs Distributions Along 3D Crack Fronts of a Body Subjected to Thermal Shock,” Int. J. Numer. Methods Eng., 60 , pp. 1317–1337.

[CrossRef]Lu, Y. L., Liu, H.Jia, H., and Yu, Z. Q., 2001, “Finite Element Implementation of Thermal Weight Function Method for Calculating Transient Stress Intensity Factors of a Body Subjected to Thermal Shock,” Int. J. Fract., 108 , pp. 95–117.

[CrossRef]Salencon, J., 2001, “Thermo-Elastic Processes and Equilibrium,” "*Handbook of Continuum Mechanics: General Concepts, Thermo-elasticity*", Springer-Verlag Berlin and Heidelberg GmbH & Co., pp. 363–383.

Hong, C. C., and Stern, M., 1978, “The Computation of Stress Intensity Factors in Dissimilar Materials,” J. Elast., 8 (4), pp. 21–36.

[CrossRef]Stern, M., 1979, “The Numerical Calculation of Thermally Induced Stress Intensity Factor,” J. Elast., 9 , pp. 91–95.

[CrossRef]Banks-Sills, L., 1993, “Weight Functions for Interface Cracks,” Int. J. Fract.60 , pp. 89–95.

[CrossRef]Banks-Sills, L., Ashkenazi, D., and Eliasi, R., 1997, “Determination of the Effect of Residual Curing Stresses on an Interface Crack by Means of the Weight Function Method,” Comput. Mech., 19 (6), pp. 507–510.

[CrossRef]Nowacki, W., 1962, "*Thermoelasticity*", Pergamon, New York.

Rice, J., and Sih, G., 1965, “Plane Problems of Cracks in Dissimilar Media,” Trans. ASME, J. Appl. Mech., pp. 418–423.

Boley, B. A., and Weiner, J. H., 1962, "*Theory of Thermal Stresses*", Wiley, New York.

Muskhelishvili, N., 1965, "*Some Basic Problems of Mathematical Theory of Elasticity*", Noordhoff, Groningen, The Netherlands.

Carslaw, H. S., and Jaeger, J. C., 1959, "*Conduction of Heat in Solids*", 2nd ed. Oxford University Press, New York.