0
TECHNICAL PAPERS

Rapid Indentation of Transversely Isotropic or Orthotropic Half-Spaces

[+] Author and Article Information
L. M. Brock

Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506

H. G. Georgiadis

Mechanics Division, National Technical University of Athens, Zographou 15773, Greece

M. T. Hanson

Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506

J. Appl. Mech 68(3), 490-495 (Dec 16, 2000) (6 pages) doi:10.1115/1.1365154 History: Received October 02, 2000; Revised December 16, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
Fichera, G., 1972, “Boundary Value Problems of Elasticity With Unilateral Constraints,” in Handbuch der Physik, VIa/2, Springer, Berlin, pp. 391–424.
Muskhelishvili, N. I., 1975, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Leyden.
Gladwell, G. M. L., 1980, Contact Problems in the Classical Theory of Elasticity, Sijthoff and Noordhoff, Alphen aan Rijn.
Willis,  J. R., 1966, “Hertzian Contact of Anisotropic Bodies,” J. Mech. Phys. Solids, 16, pp. 163–176.
Fan,  H., and Keer,  L. M., 1994, “Two-Dimensional Contact on an Anisotropic Half-Space,” ASME J. Appl. Mech., 61, pp. 250–255.
Hanson,  M. T., 1992, “The Elastic Field for Spherical Hertzian Contact Including Sliding Friction for Transverse Isotropy,” ASME J. Tribol., 114, pp. 606–611.
Bedding,  R. J., and Willis,  J. R., 1973, “Dynamic Indentation of an Elastic Half-Space,” J. Elast., 3, pp. 289–309.
Georgiadis,  H. G., and Barber,  J. R., 1993, “On the Super-Rayleigh/Subseismic Elastodynamic Indentation Problem,” J. Elast., 31, pp. 141–161.
Brock,  L. M., and Georgiadis,  H. G., 1994, “Dynamic Frictional Indentation of an Elastic Half-Plane by a Rigid Punch,” J. Elast., 35, pp. 223–249.
Borodich,  F. M., 2000, “Some Contact Problems of Anisotropic Elastodynamics: Integral Characteristics and Exact Solutions,” Int. J. Solids Struct., 37, pp. 3345–3373.
Payton, R. G., 1983, Elastic Wave Propagation in Transversely Isotropic Media, Martinus Nijhoff, The Hague.
Sokolnikoff, I. S., 1956, Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New York.
Scott,  R. A., and Miklowitz,  J., 1967, “Transient Elastic Waves in Anisotropic Plates,” ASME J. Appl. Mech., 34, pp. 104–110.
Nye, J. F., 1957, Physical Properties of Crystals, Their Representation by Tensors and Matrices, Clarendon Press, Oxford, UK.
Theocaris,  P. S., and Sokolis,  D. P., 2000, “Invariant Elastic Constants and Eigentensors of Orthorhombic, Tetragonal, Hexagonal and Cubic Crystalline Media,” Acta Crystallogr., A56, pp. 319–331.
Achenbach, J. D., 1973, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
Sneddon, I. N., 1972, The Use of Integral Transforms, McGraw-Hill, New York.
van der Pol, B., and Bremmer, H., 1950, Operational Calculus Based on the Two-Sided Laplace Integral, Cambridge University Press, Cambridge, UK.
Brock,  L. M., 1991, “Exact Transient Results for Pure and Grazing Indentation With Friction,” J. Elast., 33, pp. 119–143.
Norris,  A. N., and Achenbach,  J. D., 1984, “Elastic Wave Diffraction by a Semi-Infinite Crack in a Transversely Isotropic Material,” Q. J. Mech. Appl. Math., 37, pp. 565–580.
Buchwald,  V. T., 1961, “Rayleigh Waves in Transversely Isotropic Media,” Q. J. Mech. Appl. Math., 14, pp. 293–317.
Brock,  L. M., 1998, “Analytical Results for Roots of Two Irrational Functions in Elastic Wave Propagation,” J. Aust. Math. Soc. B, Appl. Math., B40, pp. 72–79.
deHoop,  A. T., 1960, “A Modification of Cagniard’s Method for Seismic Pulse Problems,” Appl. Sci. Res., B8, pp. 349–356.
Hadamard,  J., 1908, “Theories des Equations aux Derives Partielles Lineares Hyperboliques et du Problem de Cauchy,” Acta Math., 31, pp. 333–380.

Figures

Grahic Jump Location
Schematic of indentation by a rigid wedge
Grahic Jump Location
Schematic of indentation by a rigid cylinder
Grahic Jump Location
Contact zone expansion rate variation with wedge and cylinder motion

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In