0
TECHNICAL PAPERS

On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder—Part III: End Effects

[+] Author and Article Information
H. C. Lin, S. B. Dong

Civil and Environmental Engineering Department, University of California, Los Angeles, CA 90095-1593

J. B. Kosmatka

Department of Applied Mechanics and Engineering Science, University of California, San Diego, CA 92093-0085

J. Appl. Mech 68(3), 392-398 (Jul 21, 2000) (7 pages) doi:10.1115/1.1363597 History: Received October 07, 1999; Revised July 21, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dong,  S. B., Kosmatka,  J. B., and Lin,  H. C., 2001, “On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder, Part I: Methodology for Saint-Venant Solutions,” ASME J. Appl. Mech., 68, 376—381.
de Saint-Venant,  A. J. C. B., 1856, “Memoire sur la Torsion des Prismes,” Mem. Savants Etrangers, 14, pp. 233–560.
de Saint-Venant,  A. J. C. B., 1856, “Memoire sur la Flexion des Prismes,” J. Math. Liouville, Ser. II, 1, pp. 89–189.
Johnson,  M. W., and Little,  R. W., 1965, “The Semi-Infinite Strip,” Quarterly Appl. Math., 22, pp. 335–344.
Little,  R. W., and Childs,  S. B., 1967, “Elastostatic Boundary Region Problem in Solid Cylinders,” Q. Appl. Math., 25, pp. 261–274.
Synge,  J. L., 1945, “The Problem of Saint Venant for a Cylinder With Free Sides,” Q. Appl. Math., 2, pp. 307–317.
Toupin,  R. A., 1965, “Saint-Venant’s Principle,” Arch. Ration. Mech. Anal., 18, pp. 83–96.
Knowles,  J. K., 1966, “On Saint-Venant’s Principle in the Two-Dimensional Linear Theory of Elasticity,” Arch. Ration. Mech. Anal., 21, pp. 1–22.
Horgan,  C. O., and Knowles,  J. K., 1983, “Recent Developments Concerning Saint-Venant Principle,” Adv. Appl. Mech., 23, pp. 179–269.
Horgan,  C. O., 1989, “Recent Developments Concerning Saint-Venant Principle: An Update,” Appl. Mech. Rev., 42, No. 11, pp. 295–303.
Rao,  N. R., and Valsarajan,  K. V., 1980, “Saint-Venant’s Principle in Sandwich Strip,” Comput. Struct., 12, pp. 185–188.
Dong,  S. B., and Goetschel,  D. B., 1982, “Finite Element Analysis of Edge Effects in Laminated Composite Plates,” ASME J. Appl. Mech., 49, pp. 129–135.
Glavotto,  V., Borri,  M., Mantegazza,  P., Ghiringhelli,  G., Carmaschi,  V., Maffioli,  G. C., and Mussi,  F., 1983, “Anisotropic Beam Theory and Applications,” Comput. Struct., 16, pp. 403–413.
Huang,  K. H., and Dong,  S. B., 1984, “Propagating Waves and Standing Vibrations in a Composite Cylinder,” J. Sound Vib., 96, No. 3, pp. 363–379.
Okumura,  H., Yokouchi,  Y., Watanabe,  K., and Yamada,  Y., 1985, “Local Stress Analysis of Composite Materials Using Finite Element Methods: 1st Report, Saint-Venant End Effects in Laminate Media,” Trans. Jpn. Soc. Mech. Eng., 51, pp. 563–570.
Goetschel,  D. B., and Hu,  T. H., 1985, “Quantification of Saint-Venant’s Principle for a General Prismatic Member,” Comput. Struct., 21, pp. 869–874.
Kazic,  M., and Dong,  S. B., 1990, “Analysis of Restrained Torsion,” J. Eng. Mechanics Division 116, No. 4, pp. 870–891.
Gregory,  R. D., and Gladwell,  I., 1982, “The Cantilever Beam Under Tension, Bending or Flexure at Infinity,” J. Elast., 4, pp. 317–343.
Horgan,  C. O., 1982, “Saint-Venant End Effects in Composites,” J. Compos. Mater., 16, pp. 411–422.
Savoia,  M., and Tullini,  N., 1996, “Beam Theory for Strongly Orthotropic Materials,” Int. J. Solids Struct., 33, No. 17, pp. 2459–2484.
Vel,  S. S., and Batra,  R. C., 2000, “The Generalized Plane Strain Deformation of Thick Anisotropic Composite Plates,” Int. J. Solids Struct., 37, No. 5, pp. 715–733.
Choi,  I., and Horgan,  C. O., 1977, “Saint-Venant’s Principle and End Effects in Anisotropic Elasticity,” ASME J. Appl. Mech., 44, pp. 424–430.
Choi,  I., and Horgan,  C. O., 1978, “Saint-Venant End Effects for Plane Deformation Sandwich Strips,” Int. J. Solids Struct., 14, pp. 187–195.

Figures

Grahic Jump Location
Cross sections of two beams
Grahic Jump Location
Errors in representation of fully restraint displacement conditions
Grahic Jump Location
Normalized amplitudes for homogeneous, isotropic beam
Grahic Jump Location
Normalized amplitudes for two-layer ±30 deg composite beam
Grahic Jump Location
Prescribed traction conditions at tip end
Grahic Jump Location
Stress σzz for Pz=1 in two-layer ±30 deg composite beam
Grahic Jump Location
Stress σzz for Mx=1 in two-layer ±30 deg composite beam
Grahic Jump Location
Stress σxz for Mz=1 in two-layer ±30 deg composite beam
Grahic Jump Location
Stress σyz for Mz=1 in two-layer ±30 deg composite beam

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In