0
TECHNICAL PAPERS

On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder—Part I: Methodology for Saint-Venant Solutions

[+] Author and Article Information
S. B. Dong

Civil and Environmental Engineering Department, University of California, Los Angeles, CA 90095-1593

J. B. Kosmatka

Department of Applied Mechanics and Engineering Science, University of California, San Diego, CA 92093-0085

H. C. Lin

Civil and Environmental Engineering Department, University of California, Los Angeles, CA 90095-1593

J. Appl. Mech 68(3), 376-381 (Jul 21, 2000) (6 pages) doi:10.1115/1.1363598 History: Received October 07, 1999; Revised July 21, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

de Saint-Venant,  A. J. C. B., 1856, “Memoire sur la Torsion des Prismes,” Mem. Savants Etrangers, 14, pp. 233–560.
de Saint-Venant,  A. J. C. B., 1856, “Memoire sur la Flexion des Prismes,” J. Math. de Liouville, Ser. II, 1, pp. 89–189.
Clebsch, 1862,
Voigt,  W., 1887, “Theoretische Studienüber die Elasticitätsverhältnisse der Krystalle,” Gött. Abhandl., 34, pp. 53–153
Sternberg,  E., and Knowles,  J. K., 1966, “Minimum Energy Characterizations of Saint-Venant’s Solution to the Relaxed Saint-Venant Problem,” Arch. Ration. Mech. Anal., 21, No. 2, pp. 89–107.
Ieşan,  D., 1986, “On Saint-Venant’s Problem,” Arch. Ration. Mech. Anal., 91, pp. 363–373.
Kosmatka, J. B., Lin, H. C., and Dong, S. B., 2001, “On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder, Part II: Cross-Sectional Properties,” ASME J. Appl. Mech., 68
Lin, H. C., Dong, S. B., and Kosmatka, J. B., 2001, “On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder—Part III: End Effects,” ASME J. Appl. Mech., 68
Kazic,  M., and Dong,  S. B., 1990, “Analysis of Restrained Torsion,” J. Eng. Mech., 116, No. 4, pp. 870–891.
Kosmatka,  J. B., and Dong,  S. B., 1991, “Saint-Venant Solutions for Prismatic Anisotropic Beams,” Int. J. Solids Struct., 28, No. 7, pp. 917–938.
Kantorovich, L. V., and Krylov, V., 1958, Approximate Methods for Higher Analysis, Noordhoff, Groningen, The Netherlands.
Taweel,  H., Dong,  S. B., and Kazic,  M., 2000, “Wave Reflection from the Free End of a Cylinder with an Arbitrary Cross-Section,” Int. J. Solids Struct., 37, pp. 1701–1726.
Almansi,  E., 1901, “Sopra la Deformazione dei Cilindri Solecitati Lateralmente,” Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 10, pp. I:333–338; II:400–408.
Michell,  J. H., 1901, “The Theory of Uniformly Loaded Beams,” Q. J. Math., 32, pp. 28–42.

Figures

Grahic Jump Location
Coordinate system for anisotropic cylinder

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In