0
TECHNICAL PAPERS

On the General Solution for Piezothermoelasticity for Transverse Isotropy With Application

[+] Author and Article Information
W. Q. Chen

Department of Civil Engineering, Zhejiang University, Hangzhou 310027, P. R. Chinae-mail: caijb@ccea.zju.edu.cn

J. Appl. Mech 67(4), 705-711 (May 01, 2000) (7 pages) doi:10.1115/1.1328349 History: Received January 03, 2000; Revised May 01, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tani,  J., Takagi,  T., and Qiu,  J. H., 1998, “Intelligent Material Systems: Application of Functional Materials,” ASME Appl. Mech., 51, pp. 505–521.
Pak,  Y. E., 1990, “Crack Extension Force in a Piezoelectric Material,” ASME J. Appl. Mech., 57, pp. 647–653.
Bisegna,  P., and Maceri,  F., 1996, “An Exact Three-Dimensional Solution for Simply Supported Rectangular Piezoelectric Plates,” ASME J. Appl. Mech., 63, pp. 628–638.
Chen,  W. Q., 1999, “Problems of Radially Polarized Piezoelastic Bodies,” Int. J. Solids Struct., 36, pp. 4317–4332.
Chen,  W. Q., and Shioya,  T., 1999, “Fundamental Solution for a Penny-Shaped Crack in a Piezoelectric Medium,” J. Mech. Phys. Solids, 47, pp. 1459–1475.
Chen,  W. Q., Shioya,  T., and Ding,  H. J., 1999, “The Elasto-Electric Field for a Rigid Conical Punch on a Transversely Isotropic Piezoelectric Half-Space,” ASME J. Appl. Mech., 66, pp. 764–771.
Nowinski, J. L., 1978, Theory of Thermoelasticity With Applications, Sijthoff and Noordhoff, Alpen aan den Rijn, The Netherlands.
Tiersten,  H. F., 1971, “On the Nonlinear Equations of Thermoelectroelasticity,” Int. J. Eng. Sci., 9, pp. 587–604.
Nowacki,  W., 1978, “Some General Theorems of Thermopiezoelectricity,” J. Therm. Stresses, 1, pp. 171–182.
Nowacki,  J. P., 1982, “Steady-State Problems of Thermopiezoelectricity,” J. Therm. Stresses, 5, pp. 183–194.
Chandrasekharaiah,  D. S., 1988, “A Generalized Linear Thermoelasticity Theory for Piezoelectric Media,” Acta Mech., 71, pp. 39–49.
Iesan,  D., 1989, “On Some Theorems in Thermopiezoelectricity,” J. Therm. Stresses, 12, pp. 209–222.
Tauchert,  T. R., 1992, “Piezothermoelastic Behavior of a Laminated Plate,” J. Therm. Stresses, 15, pp. 25–37.
Dube,  G. P., Kapuria,  S., and Dumir,  P. C., 1996, “Exact Piezothermoelastic Solution of Simply-Supported Orthotropic Circular Cylindrical Panel in Cylindrical Bending,” Arch. Appl. Mech., 66, pp. 537–554.
Lee,  H. J., and Saravanos,  D. A., 1996, “Coupled Layerwise Analysis of Thermopiezoelectric Composite Beams,” AIAA J., 34, pp. 1231–1237.
Stam,  M., and Carman,  G., 1996, “Electrothermoelastic Behavior of Piezoelectric Coupled Cylinders,” AIAA J., 34, pp. 1612–1618.
Tang,  Y. Y., Noor,  A. K., and Xu,  K., 1996, “Assessment of Computational Models for Thermoelectroelastic Multilayered Plates,” Comput. Struct., 61, pp. 915–923.
Xu,  K., and Noor,  A. K., 1996, “Three-Dimensional Analytical Solutions for Coupled Thermoelectroelastic Response of Multilayered Cylindrical Shells,” AIAA J., 34, pp. 802–812.
Ashida,  F., Tauchert,  T. R., and Noda,  N., 1993, “Response of a Piezothermoelastic Plate of Crystal Class 6 mm Subject to Axisymmetric Heating,” Int. J. Eng. Sci., 31, pp. 373–384.
Ashida,  F., Noda,  N., and Tauchert,  T. R., 1994, “A Two-Dimensional Piezothermoelastic Problem in an Orthotropic Plate Exhibiting Crystal Class 2 mm,” JSME Int. J., 37, pp. 334–340.
Ashida,  F., Tauchert,  T. R., and Noda,  N., 1994, “A General Solution Technique for Piezothermoelasticity of Hexagonal Solids of Class 6 mm in Cartesian Coordinates,” Z. Angew. Math. Mech., 74, pp. 87–95.
Ashida,  F., Tauchert,  T. R., and Noda,  N., 1994, “Potential Function Method for Piezothermoelastic Problems of Solids of Crystal Class 6 mm in Cylindrical Coordinates,” J. Therm. Stresses, 17, pp. 361–375.
Ashida,  F., Noda,  N., and Tauchert,  T. R., 1994, “Inverse Problem of Two-Dimensional Piezothermoelasticity in an Orthotropic Plate Exhibiting Crystal Class mm 2,” JSME Int. J., 37, pp. 341–346.
Ashida,  F., Choi,  J., and Noda,  N., 1997, “Control of Elastic Displacement in Piezoelectric-Based Intelligent Plate Subjected to Thermal Load,” Int. J. Eng. Sci., 35, pp. 851–868.
Ashida,  F., and Tauchert,  T. R., 1997, “Temperature Determination for a Contacting Body Based on an Inverse Piezothermoelastic Problem,” Int. J. Solids Struct., 34, pp. 2549–2561.
Ashida,  F., and Tauchert,  T. R., 1998, “Transient Response of a Piezothermoelastic Circular Disk Under Axisymmetric Heating,” Acta Mech., 128, pp. 1–14.
Kapuria,  S., Dumir,  P. C., and Sengupta,  S., 1996, “Exact Piezothermoelastic Axisymmetric Solution of a Finite Transversely Isotropic Cylindrical Shell,” Comput. Struct., 61, pp. 1085–1099.
Kapuria,  S., Dumir,  P. C., and Segupta,  S., 1998, “Three-Dimensional Axisymmetric Piezothermoelastic Solution of a Transversely Isotropic Piezoelectric Clamped Circular Plate,” ASME J. Appl. Mech., 65, pp. 178–183.
Ding,  H. J., Guo,  F. L., Hou,  P. F., and Chi,  Y. W., 1999, “A General Solution for Static Piezothermoelastic Problems of Crystal Class 6 mm Solids,” Acta Mech. Solida Sinica, 12, pp. 189–197.
Ding,  H. J., Guo,  F. L., and Hou,  P. F., 2000, “A General Solution for Piezothermoelasticity of Transversely Isotropic Piezoelectric Materials and Its Applications,” Int. J. Eng. Sci., 38, pp. 1415–1440.
Shang,  F. L., Wang,  Z. K., and Li,  Z. H., 1996, “Thermal Stresses Analysis of a Three-Dimensional Crack in a Thermopiezoelectric Solid,” Eng. Fract. Mech., 55, pp. 737–750.
Fabrikant, V. I., 1989, Applications of Potential Theory in Mechanics: A Selection of New Results, Kluwer Academic Publishers, The Netherlands.
Chen,  W. Q., 1999, “On the Application of Potential Theory in Piezoelasticity,” ASME J. Appl. Mech., 66, pp. 808–811.
Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
Ding,  H. J., Chen,  B., and Liang,  J., 1996, “General Solutions for Coupled Equations for Piezoelectric Media,” Int. J. Solids Struct., 33, pp. 2283–2298.
Sneddon, I. N., 1966, Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam.
Tsai,  Y. M., 1983, “Thermal Stress in a Transversely Isotropic Medium Containing a Penny-Shaped Crack,” ASME J. Appl. Mech., 50, pp. 24–28.
Sneddon, I. N., and Lowengrub, M., 1969, Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons, New York.

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In