0
TECHNICAL PAPERS

On the Characterization of Dynamic Properties of Random Processes by Spectral Parameters

[+] Author and Article Information
G. Petrucci

Dipartimento di Meccanica e Aeronautica

M. Di Paola

Dipartimento di Ingegneria Strutturale e Geotecnica,e-mail: dipaola@stru.diseg.unipa.it

B. Zuccarello

Dipartimento di Meccanica e Aeronautica, Universita degli Studi di Palermo, 90128 Palermo, Italye-mail: zuccarello@dima.unipa.it

J. Appl. Mech 67(3), 519-526 (May 05, 2000) (8 pages) doi:10.1115/1.1312805 History: Received July 28, 1998; Revised May 05, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nigam, N. C., 1983, Introduction to Random Vibrations, M.I.T. Press, Cambridge, MA.
Leadbetter, M. R., Lindgren, G., and Rootzen, G., 1983, Extreme and Related Properties of Random Sequences and Processes, Springer-Verlag, New York.
Crandall, S. H., and Mark, W. D., 1963, Random Vibration in Mechanical System, Academic Press, New York.
Cramer, H., and Leadbetter, M. R., 1967, Stationary and Related Stochastic Processes, John Wiley and Sons, New York.
Lin, Y. K., 1967, Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York.
Wirsching,  P. H., and Light,  M. C., 1980, “Fatigue Under Wide band Random Stresses,” J. Struct. Div. ASCE, 106, No. ST7, pp. 1593–1607.
Dowling,  N. E., 1983, “Fatigue Life Prediction for Complex Load Versus Time Histories,” J. Eng. Mater. Technol., 105, pp. 206–214.
Tunna,  J. M., 1985, “Random Load Fatigue: Theory and Experiment,” Proc. Inst. Mech. Eng., 199, No. C3, pp. 249–257.
Tunna,  J. M., 1986, “Fatigue Life Prediction for Gaussian Random Loads,” Fatigue Fract. Eng. Mater. Struct., 9, No. 3, pp. 169–184.
Lindgren,  G., and Rychlik,  I., 1987, “Rain Flow Cycle Distributions for Fatigue Prediction Under Gaussian Load Processes,” Fatigue Fract. Eng. Mater. Struct., 10, No. 3, pp. 251–260.
Rychlik,  I., 1992, “Rain Flow Cycle in Gaussian Loads,” Fatigue Fract. Eng. Mater. Struct., 15, No. 1, pp. 57–72.
Kim,  J. J., and Kim,  H. Y., 1994, “Simple Method for Evaluation of Fatigue Damage of Structures in Wide Band Random Vibration,” Proc. Inst. Mech. Eng., 208, pp. 65–68.
Lutes,  L. D., Corazao,  M., Hu,  S. J., and Zimmerman,  J., 1984, “Stochastic Fatigue Damage Accumulation,” J. Struct. Eng., 110, No. 4, pp. 2585–2601.
Vanmarke,  E. H., 1972, “Properties of Spectral Moments With Applications to Random Vibrations,” J. Eng. Mech., 98, pp. 425–446.
Papoulis, A., 1984, Signal Analysis, McGraw-Hill, New York.
Di Paola,  M., 1985, “Transient Spectral Moments of Linear System,” S.M. Arch., 10, pp. 225–243.
Di Paola,  M., and Petrucci,  G., 1990, “Spectral Moments and Pre-envelope Covariances of Nonseparable Processes,” ASME J. Appl. Mech., 57, pp. 218–224.
Madsen, H. O., Krenk, S., and Lind, N. C., 1986, Methods of Structural Safety, Prentice-Hall, Englewood Cliffs, NJ.
Sobczyk, K., and Spencer, B. F., 1992, Random Fatigue From Data to Theory, Academic Press, San Diego.
Wirsching, P. H., Paez, T. L., and Ortiz, K., 1995, Random Vibrations, John Wiley and Sons, New York.
Petrucci,  G., and Zuccarello,  B., 1999, “On the Estimation of the Fatigue Cycle Distribution From Spectral Density Data,” J. Mech. Eng. Sci., 213, pp. 819–831.
Davenport, A. G., and Novak, M., 1988, Shock & Vibration Handbook, p. 23, C. M. Harris, ed., McGraw-Hill, New York, Chap. 29.

Figures

Grahic Jump Location
Power spectral density (PSD) functions SX1 and SX2 (a) and corresponding sample functions y1(t),y2(t),AX1 and AX2 (b).
Grahic Jump Location
Sample functions of the processes Θ̇X1,Θ̇X2,ȦX1/AX1 coincident with ȦX2/AX2 (a) and Θ̇1 and Θ̇2 (b)
Grahic Jump Location
PSD of type (a) and PSD of type (b) used in the numerical simulations
Grahic Jump Location
Sample functions and range distributions of the process A1 with PSD of type (a) and of the process B1 with PSD of type (b) having both the same parameters αX=0.15 and qX=0.74
Grahic Jump Location
PSDs of the processes A2 and B2 having both αX≈.76,qX≈.47α≈.97 and q≈.20
Grahic Jump Location
Sample functions and range distributions of the process A2 and B2 having the same parameters αX≈.76,qX≈.47,α≈.97 and q≈.20
Grahic Jump Location
Two-degree-of freedom system considered in the practical example
Grahic Jump Location
PSD of the output displacement process Xw (a) and relative range distribution (b)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In