0
TECHNICAL PAPERS

On the General Solutions for Annular Problems With a Point Heat Source

[+] Author and Article Information
C. K. Chao, C. J. Tan

Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei, Taiwan 106, R.O.C.

J. Appl. Mech 67(3), 511-518 (Jan 29, 1999) (8 pages) doi:10.1115/1.1312804 History: Received July 28, 1998; Revised January 29, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lamè, G., 1852, Lecons sur la Thèorie Mathèmatique de l’Elasticitè des Corps Solides, Gauthier-Villars, Paris.
Michell,  J. H., 1899, “On the Direct Determination of Stress in an Elastic Solid,” Proc. London Math. Soc., 31, pp. 100–124.
Bowie,  O. L., and Freese,  C. E., 1972, “Elastic Analysis for a Radial Crack in a Circular Ring,” Eng. Fract. Mech., 4, pp. 315–321.
Delale,  F., and Erdogan,  F., 1982, “Stress Intensity Factors in a Hollow Cylinder Containing a Radial Crack,” Int. J. Fract., 20, pp. 251–265.
Worden,  R. E., and Keer,  L. M., 1991, “Green’s Functions for a Point Load and Dislocation in an Annular Region,” ASME J. Appl. Mech., 58, pp. 954–959.
Cheng,  W., and Finnie,  I., 1989, “Stress Intensity Factors for Radial Cracks in Circular Cylinders and Other Simply Closed Cylindrical Bodies,” Eng. Fract. Mech., 32, pp. 767–774.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, 3rd Ed., McGraw-Hill, New York.
Bogdanoff,  J. L., 1954, “Note on Thermal Stress,” ASME J. Appl. Mech., 21, p. 88.
Carslaw, H. S., and Jaeger, J. C., 1965, Conduction of Heats in Solids, Clarendon Press, Oxford, UK.
Chao,  C. K., and Shen,  M. H., 1997, “On Bonded Circular Inclusions in Plane Thermoelasticity,” ASME J. Appl. Mech., 64, pp. 1000–1004.
Muskhelishvili, N. I., 1954, Some Basic Problems of Mathematical Theory of Elasticity, P. Noordhoff, Groningen.

Figures

Grahic Jump Location
Problem configuration for the annulus
Grahic Jump Location
Analytic regions of the annulus
Grahic Jump Location
Relationship between the strength of a point heat source and the temperatures at the boundaries of the annulus
Grahic Jump Location
Dilatation stress in the annulus for the stress-free boundary condition at the inner and outer boundaries
Grahic Jump Location
Dilatation stress in the annulus for the displacement-free and stress-free boundary conditions at the inner and outer boundaries, respectively
Grahic Jump Location
Dilatation stress in the annulus for the stress-free and displacement-free boundary conditions at the inner and outer boundaries, respectively

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In