Saito, M., and Takahashi, H., 1990, “Development of Small Punch Test Procedure for FGM Fabrication,” *FGM-90: Proc. First Int. Symposium on Functionally Gradient Materials*, M. Yamanouchi et al., eds., FGM Forum, Tokyo, Japan, pp. 297–305.

Jin, Z. H., and Noda, N., 1993, “Minimization of Thermal Stress Intensity Factors for a Crack in a Metal-Ceramic Mixture,” *Ceramics Transactions, Functionally Gradient Materials*, Vol. 34, J. B. Holt et al., eds., The American Ceramic Society, OH.

Jin,
Z. H., and Noda,
N., 1993, “An Internal Crack Parallel to the Boundary of a Nonhomogeneous Half Plane Under Thermal Loading,” Int. J. Eng. Sci., 31, pp. 793–806.

Noda,
N., and Jin,
Z. H., 1993, “Thermal Stress Intensity Factors for a Crack in a Functionally Gradient Material,” Int. J. Solids Struct., 30, pp. 1039–1056.

Noda,
N., and Jin,
Z. H., 1993, “Steady Thermal Stresses in an Infinite Non-Homogeneous Elastic Solid Containing a Crack,” J. Thermal Stresses, 16, pp. 181–197.

Noda,
N., and Jin,
Z. H., 1994, “A Crack in a Functionally Gradient Material Under Thermal Shock,” Arch. Appl. Mech, 64, pp. 99–110.

Jin,
Z. H., and Noda,
N., 1994, “Transient Thermal Stress Intensity Factors for a Crack in a Semi-Infinite Plate of a Functionally Gradient Material,” Int. J. Solids Struct., 31, pp. 203–218.

Erdogan,
F., and Wu,
B. H., 1996, “Crack Problem in FGM Layers Under Thermal Stresses,” J. Thermal Stresses, 19, pp. 237–265.

Jin,
Z. H., and Noda,
N., 1994, “Edge Crack in a Nonhomogeneous Half Plane Under Thermal Loading,” J. Thermal Stresses, 17, pp. 591–599.

Nemat-Alla,
M., and Noda,
N., 1996, “Study of an Edge Crack Problem in a Semi-Infinite Functionally Graded Medium with Two Dimensionally Non-Homogeneous Coefficients of Thermal Expansion Under Thermal Loading,” J. Thermal Stresses, 19, pp. 863–888.

Jin,
Z. H., and Batra,
R. C., 1996, “Stress Intensity Relaxation at the Tip of an Edge Crack in a Functionally Graded Material Subjected to a Thermal Shock,” J. Thermal Stresses, 19, pp. 317–339.

Noda,
N., 1997, “Thermal Stress Intensity Factor for Functionally Gradient Plate With an Edge Crack,” J. Thermal Stresses, 20, pp. 373–387.

Zuiker,
J. R., 1995, “Functionally Graded Materials: Choice of Micromechanics Model and Limitations in Property Variation,” Composites Eng., 5, pp. 807–819.

Miller,
M. K., and Guy,
W. T., 1966, “Numerical Inversion of the Laplace Transform by Use of Jacobi Polynomials,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 3, pp. 624–635.

Williams,
M. L., 1959, “The Stress Around a Fault of Crack in Dissimilar Media,” Bull. Seismol. Soc. Am., 49, pp. 199–204.

Christensen, R. M., 1979, *Mechanics of Composite Materials*, John Wiley and Sons, New York.

Christensen,
R. M., and Lo,
K. H., 1979, “Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models,” J. Mech. Phys. Solids, 27, pp. 315–330.

Bao,
G., and Wang,
L., 1995, “Multiple Cracking in Functionally Graded Ceramic/Metal Coatings,” Int. J. Solids Struct., 32, pp. 2853–2871.

Jin,
Z. H., and Batra,
R. C., 1996, “Some Basic Fracture Mechanics Concepts in Functionally Graded Materials,” J. Mech. Phys. Solids,44, pp. 1221–1235.

Delale,
F., and Erdogan,
F., 1983, “The Crack Problem for a Nonhomogeneous Plane,” ASME J. Appl. Mech., 50, pp. 609–613.

Delale,
F., and Erdogan,
F., 1988, “On the Mechanical Modeling of the Interfacial Region in Bonded Half-Planes,” ASME J. Appl. Mech., 55, pp. 317–324.

Delale,
F., and Erdogan,
F., 1988, “Interface Crack in a Nonhomogeneous Elastic Medium,” Int. J. Eng. Sci., 26, pp. 559–568.

Erdogan,
F., and Ozturk,
M., 1992, “Diffusion Problems in Bonded Nonhomogeneous Materials With an Interface Cut,” Int. J. Eng. Sci., 30, pp. 1507–1523.

Matsunaga,
Y., and Noda,
N., 1996, “Transient Thermoelastic Problem for a Infinite Plate Containing a Penny-Shaped Crack at an Arbitrary Position,” J. Thermal Stresses, 19, pp. 379–394.

Tsuji,
T., , 1986, “Transient Thermal Stresses in a Half Plane With a Crack Parallel to the Surface,” Bull. JSME, 29, pp. 343–347.

Kawamura,
R., and Tanigawa,
Y., 1995, “Nonlinear Thermal Bending Problem of Nonhomogeneous Beam Due to Unsteady Thermal Supply,” Trans. Jpn. Soc. Mech. Eng., Ser. A, 61, pp. 777–783.

Ootao,
Y., Akai,
T., and Tanigawa,
Y., 1993, “Three-Dimensional Transient Thermal Stress Analysis of Nonhomogeneous Hollow Circular Cylinder,” Trans. Jpn. Soc. Mech. Eng., Ser. A, 59, pp. 1684–1690.

Ootao,
Y., and Tanigawa,
Y., 1994, “Three-Dimensional Transient Thermal Stress Analysis of a Nonhomogeneous Hollow Sphere with Respect to Rotating Heating Source,” Trans. Jpn. Soc. Mech. Eng., Ser. A, 60, pp. 2273–2279.

Ootao,
Y., Tanigawa,
Y., Kasai,
T., and Nakanishi,
N., 1992, “Inverse Problem Analysis of Transient Thermal Stresses in a Nonhomogeneous Solid Circular Cylinder Due to Asymmetric Heating,” Trans. Jpn. Soc. Mech. Eng., Ser. A, 58, pp. 567–573.

Tanigawa,
Y., Akai,
T., Kawamura,
R., and Oka,
N., 1996, “Transient Heat Conduction and Thermal Stresses Problems of a Nonhomogeneous Plate with Temperature Dependent Material Properties,” J. Thermal Stresses, 19, pp. 77–102.

Tanigawa,
Y., Matsumoto,
M., and Akai,
T., 1996, “Optimization Problem of Material Composition for Nonhomogeneous Plate to Minimize Thermal Stresses When Subjected to Unsteady Heat Supply,” Trans. Jpn. Soc. Mech. Eng., Ser. A, 62, pp. 115–122.

Tanigawa,
Y., Oka,
N., Akai,
T., and Kawamura,
R., 1996, “One-Dimensional Transient Thermal Stress Problem for Nonhomogeneous Hollow Circular Cylinder and Its Optimization,” Trans. Jpn. Soc. Mech. Eng., Ser. A, 62, pp. 128–136.