0
TECHNICAL PAPERS

Combined Torsion, Circular and Axial Shearing of a Compressible Hyperelastic and Prestressed Tube

[+] Author and Article Information
M. Zidi

Laboratoire de Mécanique Physique, UPRESA CNRS 7052, Université Paris 12, 61, avenue du Général De Gaulle, 94010 Cretéil Cédex, Francee-mail: zidi@univ-paris12.fr

J. Appl. Mech 67(1), 33-40 (Oct 12, 1999) (8 pages) doi:10.1115/1.321149 History: Received January 06, 1999; Revised October 12, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ogden,  R. W., Chadwick,  P., and Haddon,  E. W., 1973, “Combined Axial and Torsional Shear of Tube of Incompressible Isotropic Elastic Material,” Q. J. Mech. Appl. Math., 26, pp. 23–41.
Mioduchowski,  A., and Haddow,  J. B., 1979, “Combined Torsional and Axial Shear of a Compressible Hyperelastic Tube,” ASME J. Appl. Mech., 46, pp. 223–226.
Levinson,  M., and Burgess,  I. W., 1971, “A Comparison of Some Simple Constitutive Relations for Slightly Compressible Rubber-Like Materials,” Int. J. Mech. Sci., 13, pp. 563–572.
Blatz,  P. J., and Ko,  W. L., 1962, “Application of Finite Elastic Theory to the Deformation of Rubbery Materials,” Trans. Soc. Rheol., 6, pp. 223–251.
Ogden,  R. W., and Isherwood,  D. A., 1978, “Solution of Some Finite Plane-Strain Problems for Compressible Elastic Solids,” Q. J. Mech. Appl. Math., 31, pp. 219–249.
Carroll,  M. M., and Horgan,  C. O., 1990, “Finite Strain Solutions for a Compressible Elastic Solid,” Q. Appl. Math., 48, No. 4, pp. 767–780.
Tao,  L., Rajagopal,  K. R., and Wineman,  A. S., 1992, “Circular Shearing and Torsion of Generalized Neo-Hookean Materials,” IMA J. Appl. Math., 48, pp. 23–37.
Knowles,  J. K., and Sternberg,  E., 1975, “On the Ellipticity of the Equations of Nonlinear Elastostatics for a Special Material,” J. Elast., 5, pp. 341–361.
Abeyaratne,  R., and Knowles,  J. K., 1987, “Non-elliptic Elastic Materials and the Modeling of Dissipative Mechanical Behavior: An Example,” J. Elast., 18, pp. 227–278.
Horgan,  C. O., 1996, “Remarks on Ellipticity for the Generalized Blatz-Ko Constitutive Model for Compressible Nonlinearly Elastic Solid,” J. Elast., 42, pp. 165–176.
Zidi,  M., 1999, “Torsion and Axial Shearing of a Compressible Hyperelastic Tube,” Mech. Res. Commun., 26, No. 2, pp. 245–252.
Zidi,  M., 2000, “Circular Shearing and Torsion of a Compressible Hyperelastic and Prestressed Tube,” Int. J. Non-Linear Mech., 35, pp. 201–209.
Sensening,  C. B., 1965, “Non Linear Theory for the Deformation of Pre-stressed Circular Plates and Rings,” Commun. Pure Appl. Math., 18, pp. 147–161.
Le Tallec,  P., and Vidrascu,  M., 1984, “A Numerical Method for Solving Equilibrium Problems of Compressible Hyperelastic Bodies in Large Deformations,” Numer. Math., 43, pp. 199–224.
Wineman,  A. S., and Waldron,  W. K., 1995, “Normal Stress Effects Induced During Circular Shear of a Compressible Non-linear Elastic Cylinder,” Int. J. Non-Linear Mech.,30, No. 3, pp. 323–339.
Ertepinar,  A., 1990, “On the Finite Circumferential Shearing of Compressible Hyperelastic Tubes,” Int. J. Eng. Sci., 18, No. 9, pp. 889–896.
Beatty,  M. F., 1987, “Topics in Finite Elasticity: Hyperelasticity of Rubber, Elastomers and Biological Tissues—With Examples,” Appl. Mech. Rev., 40, pp. 1699–1734.
Polignone,  D. A., and Horgan,  C. O., 1991, “Pure Torsion of Compressible Nonlinearly Elastic Circular Cylinders,” Q. Appl. Math., 49, No. 3, pp. 591–607.
Polignone,  D. A., and Horgan,  C. O., 1992, “Axisymmetric Finite Anti-plane Shear of Compressible Nonlinearly Elastic Circular Tubes,” Q. Appl. Math., 50, pp. 323–341.
Haughton,  D. M., 1993, “Shearing of Compressible Elastic Cylinders,” Q. J. Mech. Appl. Math., 46, pp. 471–486.
Polignone,  D. A., and Horgan,  C. O., 1994, “Pure Circular Shear of Compressible Non-linearly Elastic Tubes,” Q. Appl. Math., 50, pp. 113–131.
Simmonds,  J. G., and Warne,  P., 1992, “Azimuthal Shear of Compressible or Incompressible, Non-linearly Elastic Polar Orthotropic Tubes of Infinite Extent,” Int. J. Non-Linear Mech., 27, No. 3, pp. 447–464.

Figures

Grahic Jump Location
Volume ratio versus radius for different angles of twist when α=0.25, M̄1=1, M̄2=1
Grahic Jump Location
Circumferential stretch ratio versus radius for different angles of twist when α=0, M̄1=0, M̄2=1
Grahic Jump Location
Volume ratio versus radius for different angles of twist when α=0, M̄1=0, M̄2=1
Grahic Jump Location
Circumferential stretch ratio versus radius for different angles of twist when α=0.25, M̄1=1, M̄2=1
Grahic Jump Location
Volume ratio versus radius for different angles of twist when α=0.25, M̄1=0, M̄2=1
Grahic Jump Location
Circumferential stretch ratio versus radius for different angles of twist when α=0.25, M̄1=0, M̄2=1
Grahic Jump Location
Cross section of the tube in the stress-free (a), unloaded (b), and loaded configuration (c)
Grahic Jump Location
Circumferential stretch ratio versus radius for different angles of twist when α=0, M̄1=1, M̄2=1
Grahic Jump Location
Volume ratio versus radius for different angles of twist when α=0, M̄1=1, M̄2=1

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In