Melan’s Problems With Weak Interface

[+] Author and Article Information
S. Lenci

Instituto di Scienza e Tecnica delle Costruzioni, Universita di Ancona via Brecce Bianche, Monte d’Ago, 60100 Ancona, Italy

J. Appl. Mech 67(1), 22-28 (Oct 12, 1999) (7 pages) doi:10.1115/1.321147 History: Received November 18, 1997; Revised October 12, 1999
Copyright © 2000 by ASME
Topics: Force , Fibers , Stress
Your Session has timed out. Please sign back in to continue.


Melan,  E., 1932, “Ein Beitrag zur Theori geschweisster Verbindungen,” Ing.-Arch., 3, pp. 123–129.
Love, A. E. H., 1926, A Treatise on the Mathematical Theory of Elasticity, Oxford Univ. Press, Oxford (reprinted by Dover, New York, 1944).
Koiter,  W. T., 1955, “On the Diffusion of Load From a Stiffener into a Sheet,” Q. J. Mech. Appl. Math., VIII, pp. 164–178.
Buell,  E. L., 1948, “On the Distribution of Plane Stress in a Semi-infinite Plate With Partially Stiffened Edge,” J. Math. Phys., 26, pp. 223–233.
Benscoter,  S., 1949, “Analysis of a Single Stiffener on an Infinite Sheet,” ASME J. Appl. Mech., 16, pp. 242–246.
Erdogan, and  F., Gupta,  G. D., 1971, “The Problem of an Elastic Stiffener Bonded to a Half Plane,” ASME J. Appl. Mech., 38, pp. 937–941.
Lee,  E. J., and Klang,  E. C., 1992, “Stress Distribution in an Edge-Stiffened Semi-Infinite Elastic Plate Containing a Circular Hole,” ASME J. Appl. Mech., 59, pp. 789–795.
Muki,  R., and Sternberg,  E., 1967, “Transfer of Load From an Edge Stiffener to a Sheet—A Reconsideration of Melan’s Problem,” ASME J. Appl. Mech., 34, pp. 679–686.
Shield,  T. W., and Kim,  K. S., 1992, “Beam Theory Models for Thin Film Segments Cohesively Bonded to an Elastic Half Space,” Int. J. Solids Struct., 29, pp. 1085–1103.
Bufler,  H., 1964, “Zur Krafteinleitung in Scheiben Uber Geschweisste Oder Geklebte Verbindungen,” Ing.-Arch., 18, p. 284.
Reissner,  E., 1940, “Note on the Problem of Distribution of Stress in a Thin Stiffened Elastic Sheet,” Proc. Natl. Acad. Sci. USA 26, pp. 300–305.
Goodier,  J. N., and Hsu,  C. S., 1954, “Transmission of Tension From a Bar to a Plate,” ASME J. Appl. Mech., 21, pp. 147–150.
LeFevre,  E. J., Mudge,  D. R. J., and Dickie,  J. F., 1966, “An Analysis of the Distribution of Tension in a Bar Attached to a Plate,” J. Strain Anal., 1, pp. 389–393.
Muki,  R., and Sternberg,  E., 1968, “On the Diffusion of Load From a Transverse Tension Bar Into a Semi-Infinite Elastic Sheet,” ASME J. Appl. Mech., 35, pp. 737–746.
Grigolyuk, E. I., and Tolkachev, V. M., 1987, Contact Problems in the Theory of Plates and Shells, Mir, Moscow.
Budiansky,  B., and Wu,  T. T., 1961, “Transfer of a Load to a Sheet From a Rivet-Attached Stiffener,” J. Math. Phys., 40, pp. 142–162.
Rybakov,  L. S., and Cherepanov,  G. P., 1977, “Discrete Interaction of a Plate With a Semi-infinite Stiffener,” Prikl. Mat. Mekh., 41, pp. 322–328.
Rybakov,  L. S., 1982, “On Discrete Interaction of a Plate and a Damaged Stringer,” J. Appl. Math. Mech., (transl. of Prik. Mat. Mek.)45, pp. 127–133
Antipov,  Y. A., and Arutyunyan,  N. K., 1993, “A Contact Problem With Friction and Adhesion for an Elastic Layer With Stiffeners,” J. Appl. Math. Mech., 57, pp. 159–170 (transl. of Prik. Mat. Mek.).
Goland,  M., and Reissner,  E., 1944, “The Stresses in Cemented Joints,” ASME J. Appl. Mech., 11, pp. A17–A27.
Gilibert,  Y., and Rigolot,  A., 1979, “Analyze Asymptotique des Assemblage Collés a Double Recouvrement Sollicités au Cisaillement en Traction,” J. Mec. Appl., 3, No. 3, pp. 341–372.
Klarbring,  A., 1991, “Derivation of a Model of Adhesively Bonded Joints by the Asymptotic Expansion Method,” Int. J. Eng. Sci., 29, pp. 493–512.
Geymonat,  G., Krasucki,  F., and Lenci,  S., 1999, “Mathematical Analysis of a Bonded Joint With Soft Thin Adhesive,” Math. Mech. Sol., 4, pp. 201–225.
Gradshteyn, I. S., and Ryzhik, I. M., 1965, Tables of Integrals, Series, and Products, Academic Press, New York.
Abramowitz, M., and Stegun, I. A., 1965, Handbook of Mathematical Functions, Dover Publications, New York.
Muskhelishvili, N. I., 1953, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Leyden.


Grahic Jump Location
The semi-length of the zone of influence
Grahic Jump Location
The sheet with a broken fiber
Grahic Jump Location
The axial load in the fiber
Grahic Jump Location
The semi-length of the zone of influence
Grahic Jump Location
The infinite sheet with a stiffener loaded by a single force



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In