Contact Creep of Biphasic Cartilage Layers

[+] Author and Article Information
R. Kelkar, G. A. Ateshian

Department of Mechanical Engineering, Columbia University, New York, NY 10027-6699

J. Appl. Mech 66(1), 137-145 (Mar 01, 1999) (9 pages) doi:10.1115/1.2789140 History: Received October 07, 1996; Revised July 01, 1998; Online October 25, 2007


Integral transform methods are used to solve the contact creep problem between two identical cylindrical biphasic cartilage layers bonded to rigid impermeable subchondral bone substrates. The biphasic model employed for cartilage consists of a binary mixture of an incompressible porous-permeable solid phase and an incompressible fluid phase. Solutions are obtained as a function of time, from the instantaneous to the equilibrium responses of the tissue. A significant result of this analysis is that under application of a step load, fluid pressurization may support upward of 96 percent of the total applied load for more congruent joints, shielding the solid collagen-proteoglycan matrix of the tissue from excessive stresses during physiological loading durations. The protection imparted by interstitial fluid pressurization to the solid collagen-proteoglycan matrix of cartilage is investigated, and the influence of material properties and osteoarthritic changes on the potential loss of this protective effect is discussed.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In