Tangential Loading of General Three-Dimensional Contacts

[+] Author and Article Information
M. Ciavarella

Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ, England

J. Appl. Mech 65(4), 998-1003 (Dec 01, 1998) (6 pages) doi:10.1115/1.2791944 History: Received June 23, 1997; Revised June 18, 1998; Online October 25, 2007


A general three-dimensional contact, between elastically similar half-spaces, is considered. With a fixed normal load, we consider a pure relative tangential translation between the two bodies. We show that, for the case of negligible Poisson’s ratio, an exact solution is given by a single component of shearing traction, in the direction of loading. It is well known that, for full sliding conditions, the tangential force must be applied through the center of the pressure distribution. Instead, for a full stick case the tangential force must be applied through the center of the pressure distribution under a rigid flat indenter whose planform is the contact area of the problem under consideration. Finally, for finite friction a partial slip regime has to be introduced. It is shown that this problem corresponds to a difference between the actual normal contact problem, and a corrective problem corresponding to a lower load, but with same rotation of the actual normal indentation. Therefore for a pure translation to occur in the partial slip regime, the point of application of the tangential load must follow the center of the “difference” pressure. The latter also provides a complete solution of the partial slip problem. In particular, the general solution in quadrature is given for the axisymmetric case, where it is also possible to take into account of the effect of Poisson’s ratio, as shown in the Appendix.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In