0
TECHNICAL PAPERS

Vibration of Thick Prismatic Structures With Three-Dimensional Flexibilities

[+] Author and Article Information
K. M. Liew, K. C. Hung, M. K. Lim

Division of Engineering Mechanics, School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798

J. Appl. Mech 65(3), 619-625 (Sep 01, 1998) (7 pages) doi:10.1115/1.2789103 History: Received May 28, 1996; Revised July 20, 1997; Online October 25, 2007

Abstract

This paper presents an investigation on free vibration of thick prismatic structures (thick-walled open sections of L, T, C, and I shapes). The derivation of a linear frequency equation based on an exact three-dimensional small-strain linearly elastic principle is presented. This formulation uses one and two-dimensional polynomial series to approximate the spatial displacements of the thick-walled open sections in three dimension. The proposed technique is applicable to vibration of thick-walled open sections of different cross-sectional geometries and end support conditions. In this study, however, we focus primarily on the cantilevered case which has high value in practical applications. The perturbation of frequency responses due to the variations of cross-sectional geometries and wall thicknesses is investigated. First-known frequency parameters and three-dimensional deformed mode shapes of these thick-walled open sections are presented in vivid graphical forms. The new results may serve as a benchmark reference to future research into the refined beam and plate theories and also for checking the accuracy of new numerical techniques.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In