Kinematic Description of Damage

[+] Author and Article Information
Taehyo Park

Department of Civil Engineering, Korea Maritime University, Youngdo, Pusan 606-791, Korea

G. Z. Voyiadjis

Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803

J. Appl. Mech 65(1), 93-98 (Mar 01, 1998) (6 pages) doi:10.1115/1.2789052 History: Received September 24, 1996; Revised April 15, 1997; Online October 25, 2007


In this paper the kinematics of damage for finite elastic deformations is introduced using the fourth-order damage effect tensor through the concept of the effective stress within the framework of continuum damage mechanics. However, the absence of the kinematic description of damage deformation leads one to adopt one of the following two different hypotheses. One uses either the hypothesis of strain equivalence or the hypothesis of energy equivalence in order to characterize the damage of the material. The proposed approach in this work provides a relation between the effective strain and the damage elastic strain that is also applicable to finite strains. This is accomplished in this work by directly considering the kinematics of the deformation field and furthermore it is not confined to small strains as in the case of the strain equivalence or the strain energy equivalence approaches. The proposed approach shows that it is equivalent to the hypothesis of energy equivalence for finite strains. In this work, the damage is described kinematically in the elastic domain using the fourth-order damage effect tensor which is a function of the second-order damage tensor. The damage effect tensor is explicitly characterized in terms of a kinematic measure of damage through a second-order damage tensor. The constitutive equations of the elastic-damage behavior are derived through the kinematics of damage using the simple mapping instead of the other two hypotheses.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In