Explicit Vibration Solutions of a Cable Under Complicated Loads

[+] Author and Article Information
P. Yu

Department of Applied Mathematics, University of Western Ontario, London, ON N6A 5B7, Canada

J. Appl. Mech 64(4), 957-964 (Dec 01, 1997) (8 pages) doi:10.1115/1.2789006 History: Received July 26, 1996; Revised March 05, 1997; Online October 25, 2007


This paper is concerned with the dynamical analysis of a sagged cable having small equilibrium curvature and horizontal supports under both distributed and concentrated loads. The loads are applied in vertical as well as horizontal directions. Based on a free vibration analysis, a transfer matrix method is generalized for solving coupled, nonhomogeneous differential equations to obtain closed-form solutions for the natural frequencies and the associated vibration mode shapes in vertical, horizontal, and longitudinal directions. It is shown that two sets of independent mode shapes associated with two sets of independent frequencies always exist and can be obtained via an equation of one variable only. This method demonstrates its advantages in dealing with interactions of modes in different directions, complex arrangement of concentrated loads, and high-order modes oscillations.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In