Transient Analysis of a Subsonic Propagating Interface Crack Subjected to Antiplane Dynamic Loading in Dissimilar Isotropic Materials

[+] Author and Article Information
Yi-Shyong Ing, Chien-Ching Ma

Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 10617 Republic of China

J. Appl. Mech 64(3), 546-556 (Sep 01, 1997) (11 pages) doi:10.1115/1.2788927 History: Received April 15, 1996; Revised November 11, 1996; Online October 25, 2007


In this study, the transient stress fields and the dynamic stress intensity factor of a semi-infinite antiplane crack propagating along the interface between two different media are analyzed in detail. The crack is initially at rest and, at a certain instant, is subjected to an antiplane uniformly distributed loading on the stationary crack faces. After some delay time, the crack begins to move along the interface with a constant velocity, which is less than the smaller of the shear wave speed of these two materials. A new fundamental solution is proposed in this study, and the solution is determined by superposition of the fundamental solution in the Laplace transform domain. The proposed fundamental problem is the problem of applying exponentially distributed traction (in the Laplace transform domain) on the propagating crack faces. The exact full-field solutions and the stress intensity factor are found in the time domain by using the Cagniard-de Hoop method (de Hoop, 1958) of Laplace inversion. The near-tip fields are also obtained from the reduction of the full-field solutions. Numerical results for the dynamically extending crack are evaluated in detail. The region of the stress singular field dominated in the transient process is also discussed.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In