Dynamic Constitutive and Failure Behavior of a Two-Phase Tungsten Composite

[+] Author and Article Information
M. Zhou

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

R. J. Clifton

Division of Engineering, Brown University, Providence, RI 02912

J. Appl. Mech. 64(3), 487-494 (Sep 01, 1997) (8 pages) doi:10.1115/1.2788919 History: Received March 04, 1996; Revised November 04, 1996; Online October 25, 2007


The constitutive response and failure behavior of a W-Ni-Fe alloy over the strain rate range of 10-4 to 5 X 105 s-1 is experimentally investigated. Experiments conducted are pressure-shear plate impact, torsional Kolsky bar, and quasi-static torsion. The material has a microstructure of hard tungsten grains embedded in a soft alloy matrix. Nominal shear stress-strain relations are obtained for deformations throughout the experiments and until after the initiation of localization. Shear bands form when the plastic strain becomes sufficiently large, involving both the grains and the matrix. The critical shear strain for shear band development under the high rate, high pressure conditions of pressure-shear is approximately 1–1.5 or 6–8 times that obtained in torsional Kolsky bar experiments which involve lower strain rates and zero pressure. Shear bands observed in the impact experiments show significantly more intensely localized deformation. Eventual failure through the shear band is a combination of grain-matrix separation, ductile matrix rupture, and grain fracture. In order to understand the effect of the composite microstructure and material inhomogeneity on deformation, two other materials are also used in the study. One is a pure tungsten and the other is an alloy of W, Ni, and Fe with the same composition as that of the matrix phase in the overall composite. The results show that the overall two-phase composite is more susceptible to the formation of shear bands than either of its constituents.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In