Seismic Waves in a Laterally Inhomogeneous Layered Medium, Part II: Analysis

[+] Author and Article Information
Ruichong Zhang

Department of Civil Engineering, University of Southern California, University Park, Los Angeles, CA 90089-2531

Liyang Zhang

Widlinger Associates, Inc., New York, NY 10001

Masanobu Shinozuka

Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089-2531

J. Appl. Mech 64(1), 59-65 (Mar 01, 1997) (7 pages) doi:10.1115/1.2787294 History: Received June 27, 1995; Revised October 11, 1996; Online October 25, 2007


Seismic wave scattering representation for the layered half-space with lateral inhomogeneities subjected to a seismic dislocation source has been formulated in the companion paper with the use of first-order perturbation (Born-type approximation) technique. The total wave field is obtained as a superposition of the mean and the scattered wave fields, which are generated, respectively, by a series of double couples of body forces equivalent to the seismic dislocation source and by fictitious body forces equivalent to the existence of the lateral inhomogeneities in the layered half-space. The responses in both the mean and the scattered wave fields are found with the aid of an integral transform technique and wave propagation analysis. The characteristics of the scattered waves and their effects on the mean waves or corresponding induced ground and/or underground mean responses are investigated in this paper. In particular, coupling phenomena between P-SV and SH waves and wave number shifting effects between the mean and the scattered wave responses are presented in detail. With the lateral inhomogeneities being assumed as a homogeneous random field, a qualitative analysis is provided for estimating the effects of the lateral inhomogeneities on the ground motion, which is related to a fundamental issue: whether a real earth medium can or cannot be approximately considered as a laterally homogeneous layer. The effects of the lateral inhomogeneities on the ground motion time history are also presented as a quantitative analysis. Finally, a numerical example is carried out for illustration purposes.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In