Bifurcation and Chaos in Externally Excited Circular Cylindrical Shells

[+] Author and Article Information
Char-Ming Chin, A. H. Nayfeh

Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219

J. Appl. Mech 63(3), 565-574 (Sep 01, 1996) (10 pages) doi:10.1115/1.2823335 History: Received April 21, 1995; Revised October 16, 1995; Online December 04, 2007


The nonlinear response of an infinitely long cylindrical shell to a primary excitation of one of its two orthogonal flexural modes is investigated. The method of multiple scales is used to derive four ordinary differential equations describing the amplitudes and phases of the two orthogonal modes by (a) attacking a two-mode discretization of the governing partial differential equations and (b) directly attacking the partial differential equations. The two-mode discretization results in erroneous solutions because it does not account for the effects of the quadratic nonlinearities. The resulting two sets of modulation equations are used to study the equilibrium and dynamic solutions and their stability and hence show the different bifurcations. The response could be a single-mode solution or a two-mode solution. The equilibrium solutions of the two orthogonal third flexural modes undergo a Hopf bifurcation. A combination of a shooting technique and Floquet theory is used to calculate limit cycles and their stability. The numerical results indicate the existence of a sequence of period-doubling bifurcations that culminates in chaos, multiple attractors, explosive bifurcations, and crises.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In