Vibration and Stability of a Spinning Disk Under Stationary Distributed Edge Loads

[+] Author and Article Information
Jen-San Chen

Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 107, R.O.C.

J. Appl. Mech 63(2), 439-444 (Jun 01, 1996) (6 pages) doi:10.1115/1.2788886 History: Received August 01, 1994; Revised December 24, 1994; Online October 26, 2007


The vibration and stability of a spinning disk under conservative distributed edge tractions are studied both numerically and analytically. The edge traction is circumferentially stationary in the space. When the compressive traction is uniform, it is found that no modal interaction occurs and the natural frequencies of all nonreflected waves decrease, while the natural frequencies of the reflected waves increase. When the spinning disk is under distributed traction in the form of cos k θ, where k is a nonzero integer, it is found that the eigenvalue only changes slightly under the edge traction if the natural frequency of interest is well separated from others. When two modes are almost degenerate, however, modal interaction may or may not occur. It is observed that when the difference between the number of nodal diameters of these two modes is equal to ±k , frequency veering occurs when both modes are nonreflected, and merging occurs when one of these two modes is a reflected wave. In applying this rule, the number of nodal diameters of the forward and the reflected wave is considered as negative.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In