0
TECHNICAL PAPERS

Stress Distributions During Fiber Pull-Out

[+] Author and Article Information
R. Krishna Kumar

Department of Mechanical Engineering, Indian Institute of Technology, Madras 600036, India

J. N. Reddy

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

J. Appl. Mech 63(2), 301-306 (Jun 01, 1996) (6 pages) doi:10.1115/1.2788864 History: Received August 01, 1994; Revised May 30, 1995; Online October 26, 2007

Abstract

Fiber pull-out resistance is an important mechanism of energy absorption during the failure of fiber-reinforced composite materials. This paper deals with axial stress distribution in the fiber during a pull-out. The frictional constraint between the fiber and the matrix is modeled with a perturbed Lagrangian approach and Coulomb’s law of friction. Stress distribution has been determined for three cases, using the finite element method. The first case deals with the pull out of a fully embedded fiber. The second determines the stress distribution during fiber pull-out in the presence of a broken-embedded fiber. The third model attempts to solve the pull out of a coated fiber. The results for the first case compares favorably with those in existing literature. A local “pinching” effect, due to the matrix collapse behind the pulled fiber, is brought out clearly by this model. The second study indicates that the “plug” effect may not be significant in affecting the stress distribution. Lastly, the effects of coating stiffness and thickness are investigated.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In