0
TECHNICAL PAPERS

Stability of Cohesive Crack Model: Part I—Energy Principles

[+] Author and Article Information
Z. P. Bažant, Yuan-Neng Li

Department of Civil Engineering, Northwestern University, Evanston, IL 60208

J. Appl. Mech 62(4), 959-964 (Dec 01, 1995) (6 pages) doi:10.1115/1.2896029 History: Received March 21, 1995; Revised April 29, 1995; Online October 30, 2007

Abstract

The paper deals with a cohesive crack model in which the cohesive (crack-bridging) stress is a specified decreasing function of the crack-opening displacement. Under the assumption that no part of the crack undergoes unloading, the complementary energy and potential energy of an elastic structure which has a cohesive crack and is loaded by a flexible elastic frame is formulated using continuous influence functions representing compliances or stiffnesses relating various points along the crack. By variational analysis, in which the derivatives of the compliance or stiffness functions with respect to the crack length are related to the crack-tip stress intensity factors due to various unit loads, it is shown that the minimizing conditions reduce to the usual compatibility or equilibrium equations for the cohesive cracks. The variational equations obtained can be used as a basis for approximate solutions. Furthermore, the conditions of stability loss of a structure with a growing cohesive crack are obtained from the condition of vanishing of the second variation of the complementary energy or the potential energy. They have the form of a homogeneous Fredholm integral equation for the derivatives of the cohesive stresses or crack opening displacements with respect to the crack length. Loadings with displacement control, load control, or through a flexible loading frame are considered. Extension to the analysis of size effect on the maximum load or maximum displacement are left to a subsequent companion paper.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In