0
TECHNICAL PAPERS

On the Instability Mechanisms of a Disk Rotating Close to a Rigid Surface

[+] Author and Article Information
F. Y. Huang, C. D. Mote

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Appl. Mech 62(3), 764-771 (Sep 01, 1995) (8 pages) doi:10.1115/1.2897012 History: Received February 21, 1994; Revised October 31, 1994; Online October 30, 2007

Abstract

The instability mechanisms of a rotating disk, coupled to a rigid surface through a viscous fluid film at the interface, are investigated analytically. The fluid in the film is driven circumferentially by the viscous shear, and it flows outwards radially under centrifugal forces. The circumferential flow component creates an equivalent viscous damping rotating at one half the disk rotation speed. This film damping dissipates all backward traveling waves where the undamped wave speeds are greater than one half the disk rotation speed. The radial flow component creates a nonsymmetric stiffness in the disk-film system that energizes any wave mode at rotation speeds above its flutter speed. Instabilities in the disk-film system are of two types. A rotating damping instability is caused by the rotating film damping at rotation speeds above a critical value that is less than the flutter speed. A combination instability is caused by the combined effect of the film stiffness and damping at rotation speeds above a threshold that is greater than the flutter speed. The maximum rotation speed of stable disk vibration is bounded above by the lowest onset speed of rotating damping instability. This speed limit is predicted for two wall enclosure designs. The maximum stable rotation speed of a 5.25-inch diameter flexible, memory disk, separated from a rigid surface by a viscous air film, is shown to be more than 15 times greater than the maximum speed of the disk without the air film.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In