0
TECHNICAL PAPERS

Measurement of Cyclic Biaxial Elastoplastic Stresses at Notch Roots

[+] Author and Article Information
C. H. Yang

Department of Mechanical Engineering, Chang Gung College of Medicine and Technology, Taiwan

W. N. Sharpe

Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686

J. Appl. Mech 62(3), 646-653 (Sep 01, 1995) (8 pages) doi:10.1115/1.2895995 History: Received May 27, 1993; Revised April 06, 1994; Online October 30, 2007

Abstract

A straightforward procedure is demonstrated for measuring local cyclic elastoplastic biaxial stresses at notch roots. First, the biaxial cyclic strains are measured over short gage lengths (150 or 200 micrometers) with a laser-based strain measuring system. Then, cyclic stresses are computed from those measured strains by using an elastoplastic constitutive model. The material selected for this study is HY-80 steel which has a fine grain size and is isotropic. Double-notched specimens were prepared with two different notch geometries: a U-shaped notch with a 4.76 mm radius and a V-shaped notch with a 1.0 mm radius. Two thicknesses, 2.54 and 12.7 mm, were tested for each notch geometry to produce four different amounts of notch constraint. The results of cyclic biaxial strain measurements show good reproducibility. Stress computations based on two different constitutive models were used to compute stresses for the first cycle and a stable cycle. One of the constitutive models is the classical J 2 flow theory and the other is a two-surface cyclic plasticity model. The results computed using these two models show good agreement with each other. The measured stresses show the effect of constraint on the elastoplastic behavior at notch roots under cyclic loading conditions.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In