Three-Dimensional Analysis of Cracking in a Multilayered Composite

[+] Author and Article Information
C. H. Kuo, L. M. Keer

Department of Civil Engineering, Northwestern University, Evanston, IL 60208

J. Appl. Mech 62(2), 273-281 (Jun 01, 1995) (9 pages) doi:10.1115/1.2895928 History: Received December 01, 1992; Revised October 28, 1993; Online October 30, 2007


The three-dimensional problem of a multilayered composite containing an arbitrarily oriented crack is considered in this paper. The crack problem is analyzed by the equivalent body force method, which reduces the problem to a set of singular integral equations. To compute the kernels of the integral equations, the stiffness matrix for the layered medium is formulated in the Hankel transformed domain. The transformed components of the Green’s functions and derivatives are determined by solving the stiffness matrix equations, and the kernels are evaluated by performing the inverse Hankel transform. The crack-opening displacements and the three modes of the stress intensity factor at the crack front are obtained by numerically solving the integral equations. Examples are given for a penny-shaped crack in a bimaterial and a three-material system, and for a semicircular crack in a single layer adhered to an elastic half-space.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In