Stiffness Evaluation for Solids Containing Dilute Distributions of Inclusions and Microcracks

[+] Author and Article Information
Y. Huang, A. Chandra

Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721

K. X. Hu

Corporate Manufacturing Research Center, Motorola Inc., Schaumberg, IL 60196

J. Appl. Mech 62(1), 71-77 (Mar 01, 1995) (7 pages) doi:10.1115/1.2895886 History: Received October 28, 1992; Revised February 15, 1994; Online October 30, 2007


Materials, such as ceramics, intermetallics, and rocks, contain varying amounts of inhomogeneities, and the matrix material is vulnerable to microcracking in the neighborhood around these inhomogeneities. In an attempt to model the micromechanical aspects of this type of material, a solid containing dilute inclusions surrounded by cracks is investigated in this paper. The dilute-inclusion assumption neglects any interactions among different inclusion-crack clusters, but local inclusion-crack and crack-crack interactions are taken into account fully. It is shown that additional strain due to microcracking in a solid containing inclusions can be represented by an integral of crack opening displacements weighted by a nonuniform stress field induced by inclusions alone (in the absence of microcracking). An effective numerical approach is then developed to evaluate the effective moduli and additional macroscopic strain due to microcracking in composites. It is found that an increase in the number of hard inclusions may not always lead to expected strengthening of the materials, if the matrix material is vulnerable to microcracking around inclusions and a relatively large microcracking zone develops. The limited calculations show that a quasi-static crack-growing process can lead to an actively growing crack being arrested or to a stationary crack starting to grow. This suggests that self-similar crack growth may not be enough to describe the behavior of microcracked composites.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In