Bifurcation of Equilibrium in Thick Orthotropic Cylindrical Shells Under Axial Compression

[+] Author and Article Information
G. A. Kardomateas

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

J. Appl. Mech 62(1), 43-52 (Mar 01, 1995) (10 pages) doi:10.1115/1.2895882 History: Received November 13, 1992; Revised June 30, 1993; Online October 30, 2007


The bifurcation of equilibrium of an orthotropic thick cylindrical shell under axial compression is studied by an appropriate formulation based on the three-dimensional theory of elasticity. The results from this elasticity solution are compared with the critical loads predicted by the orthotropic Donnell and Timoshenko nonshallow shell formulations. As an example, the cases of an orthotropic material with stiffness constants typical of glass/epoxy and the reinforcing direction along the periphery or along the cylinder axis are considered. The bifurcation points from the Timoshenko formulation are always found to be closer to the elasticity predictions than the ones from the Donnell formulation. For both the orthotropic material cases and the isotropic one, the Timoshenko bifurcation point is lower than the elasticity one, which means that the Timoshenko formulation is conservative. The opposite is true for the Donnell shell theory, i.e., it predicts a critical load higher than the elasticity solution and therefore it is nonconservative. The degree of conservatism of the Timoshenko theory generally increases for thicker shells. Likewise, the Donnell theory becomes in general more nonconservative with thicker construction.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In