0
RESEARCH PAPERS

Vibrations of Transversely Isotropic Finite Circular Cylinders

[+] Author and Article Information
K. T. Chau

Department of Civil and Structural Engineering, Hong Kong Polytechnic, Hung Hom, Kowloon, Hong Kong

J. Appl. Mech 61(4), 964-970 (Dec 01, 1994) (7 pages) doi:10.1115/1.2901587 History: Received February 03, 1993; Revised June 10, 1993; Online March 31, 2008

Abstract

This paper investigates the exact frequency equations for all the possible natural vibrations in a transversely isotropic cylinder of finite length. Two wave potentials are used to uncouple the equations of motion; the resulting hyperbolic equations are solved analytically for the vibration frequencies of a finite cylinder with zero shear tractions and zero axial displacement on the end surfaces and with zero tractions on the curved surfaces. In general, the mode shapes and the frequency equations of vibrations depend on both the range of the frequency and the elastic properties of the material. The vibration frequencies for sapphire cylinders are studied as an example. Two limiting cases are also considered: the long bar limit equals the frequency equation for the longitudinal vibration of bars obtained by Morse (1954) and by Lord Rayleigh (1945); and the frequency equation for thin disks (small length/radius ratio) is also obtained. The frequency for the first axisymmetric mode agrees with the experimental observation by Lusher and Hardy (1988) to within one percent. Natural frequencies for the first three longitudinal and circumferential modes are plotted for all cylinder geometries. The lowest frequency always corresponds to the first nonsymmetric mode regardless of the dimension of the cylinder. For axisymmetric vibration modes, numerical plots show that double roots exist in the frequency equations; such doublets were observed experimentally by Booker and Sagar (1971).

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In