Theoretical Simulation of an Anomalous Response in a Torsional Oscillator

[+] Author and Article Information
M. Negahban

Department of Engineering Mechanics and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, NE 68588-0347

J. Appl. Mech 61(1), 124-130 (Mar 01, 1994) (7 pages) doi:10.1115/1.2901386 History: Received September 03, 1992; Revised February 24, 1993; Online March 31, 2008


In a torsional oscillator, constructed by stretching a hollow cylindrical natural rubber member and connecting one end to a fly wheel and the other end to a fixed support, an anomalous behavior has been experimentally observed which is attributed to crystallization in the rubber. The anomalous behavior is observed when the rubber is stretched to more than 3.5 times its initial length and is characterized by a reduction in the period of the oscillator during stress relaxation. This indicates a gradual increase in the torsional rigidity of the rubber which can be explained by crystallization. Analyzing the response of the oscillator based on modeling the rubber as an incompressible isotropic elastic or viscoelastic material predicts a behavior opposite to that observed in the experiments. Using a model developed for characterizing mechanical response during crystallization in polymers, the anomalous behavior of the oscillator is reproduced.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In