0
RESEARCH PAPERS

Distributed Transfer Function Analysis of Complex Distributed Parameter Systems

[+] Author and Article Information
B. Yang

Department of Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453

J. Appl. Mech 61(1), 84-92 (Mar 01, 1994) (9 pages) doi:10.1115/1.2901426 History: Received June 11, 1992; Revised February 03, 1993; Online March 31, 2008

Abstract

This paper presents a new analytical and numerical method for modeling and synthesis of complex distributed parameter systems that are multiple continua combined with lumped parameter systems. In the analysis, the complex distributed parameter system is first divided into a number of subsystems; the distributed transfer functions of each subsystem are determined in exact and closed form by a state space technique. The complex distributed parameter system is then assembled by imposing displacement compatibility and force balance at the nodes where the subsystems are interconnected. With the distributed transfer functions and the transfer functions of the constraints and lumped parameter systems, exact, closed-form formulation is obtained for various dynamics and vibration problems. The method does not require a knowledge of system eigensolutions, and is valid for non-self-adjoint systems with inhomogeneous boundary conditions. In addition, the proposed method is convenient in computer coding and suitable for computerized symbolic manipulation.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In