Chaotic Responses of a Two-Degree-of-Freedom Elastic-Plastic Beam Model to Short Pulse Loading

[+] Author and Article Information
J.-Y. Lee, P. S. Symonds, G. Borino

Division of Engineering, Brown University, Providence, RI 02912

J. Appl. Mech 59(4), 711-721 (Dec 01, 1992) (11 pages) doi:10.1115/1.2894033 History: Received March 28, 1991; Revised January 04, 1992; Online March 31, 2008


The paper discusses chaotic response behavior of a beam model whose ends are fixed, so that shallow arch action prevails after moderate plastic straining has occurred due to a short pulse of transverse loading. Examples of anomalous displacement-time histories of a uniform beam are first shown. These motivated the present study of a two-degree-of-freedom model of Shanley type. Calculations confirm these behaviors as symptoms of chaotic unpredictability . Evidence of chaos is seen in displacement-time histories, in phase plane and power spectral diagrams, and especially in extreme sensitivity to parameters. The exponential nature of the latter is confirmed by calculations of conventional Lyapunov exponents and also by a direct method. The two-degree-of-freedom model allows use of the energy approach found helpful for the single-degree-of-freedom model (Borino et al., 1989). The strain energy is plotted as a surface over the displacement coordinate plane, which depends on the plastic strains. Contrasting with the single-degree-of-freedom case, the energy diagram illuminates the possibility of chaotic vibrations in an initial phase, and the eventual transition to a smaller amplitude nonchaotic vibration which is finally damped out. Properties of the response are further illustrated by samples of solution trajectories in a fixed total energy plane and by related Poincare section plots.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In