Thermal Stresses in Nonlinearly Viscoelastic Solids

[+] Author and Article Information
Giancarlo U. Losi, Wolfgang G. Knauss

Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125

J. Appl. Mech 59(2S), S43-S49 (Jun 01, 1992) doi:10.1115/1.2899506 History: Received October 16, 1990; Revised May 24, 1991; Online March 31, 2008


Three different rheological models are applied to the study of transient and residual thermal stresses in amorphous polymers cooled across the glass transition. The models differ mainly in their treatments of the nonequilibrium (time-dependent) portion of the morphological changes in the polymer and their influence on the relaxation process. The interstitial volume between polymer chains (free volume) is found to play an important role in the residual stresses; they are affected by the relative time scale of thermal diffusion and thermoviscoelastic relaxation/creep. This result has implications for injection molded parts of different section dimensions and for extrusion products. This fact must also be accounted for in determining the thermomechanicalproperties in the glass transition range. The step cooling ofPVAc spheres (1 and 20 mm dia.) and a cylinder (20 mm dia.) have been considered; most of the results presented apply to the sphere(s). Residual stresses can vary by as much as 100percent depending on whether the interstitial molecular (free) volume is counted or not. It is also demonstrated that residual stresses can be higher than an elastic analysis based on the glassy properties would suggest; thus the “stressfree temperature” is found to be significantly above the glass transition.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In