0
RESEARCH PAPERS

Analysis of the Fully Developed Chute Flow of Granular Materials

[+] Author and Article Information
Hojin Ahn, Christopher E. Brennen, Rolf H. Sabersky

California Institute of Technology, Pasadena, CA 91125

J. Appl. Mech 59(1), 109-119 (Mar 01, 1992) (11 pages) doi:10.1115/1.2899415 History: Received April 17, 1989; Revised November 29, 1990; Online March 31, 2008

Abstract

Existing constitutive relations and governing equations have been used to solve for fully developed chute flows of granular materials. In particular, the results of Lun et al. (1984) have been employed and the boundary value problem has been formulated with two parameters (the coefficient of restitution between particles, and the chute inclination), and three boundary values at the chute base wall, namely the values of solid fraction, granular temperature, and mean velocity at the wall. The boundary value problem has been numerically solved by the “shooting method.” The results show the significant role played by granular conduction in determining the profiles of granular temperature, solid fraction, and mean velocity in chute flows. These analytical results are also compared with experimental measurements of velocity fluctuation, solid fraction, and mean velocity made by Ahn et al. (1989), and with the computer simulations by Campbell and Brennen (1985b).

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In