A Complete Acoustic Microscopical Analysis of Multilayered Specimens

[+] Author and Article Information
T. Kundu

Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, AZ 85721

J. Appl. Mech 59(1), 54-60 (Mar 01, 1992) (7 pages) doi:10.1115/1.2899464 History: Received February 13, 1990; Revised January 18, 1991; Online March 31, 2008


A theoretical analysis is carried out to synthesize the V(z) curves of multilayered solids immersed in water. Solid layers attenuate ultrasound and change its phase. A liquid layer may be located in between two solid layers. The goal of this analysis is to avoid the three major simplifying assumptions of the presently available techniques, as paraxial approximation, assumption of perfect reflection and ambiguous pupil function or incident field strength variation in the illuminated region. Presently available techniques developed for conventional acoustic microscopes can avoid some but not all of these assumptions for computing the V(z) curve. In this paper, the analysis is carried out for a spherical cavity lens with a large aperture angle. The V(z) curve for a uniform glass half-space is synthesized analytically and compared with experimental results. Analytical results are also presented for chromium plated glass specimens and biological cells on uniform glass half-space. Such an exact analysis of multilayered specimens is necessary for material science research as well as cell research in biology, because advanced engineering composite materials and biological cells in culture have multiple layers.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In