Dynamic Response and Buckling Failure Measures for Structures With Bounded and Random Imperfections

[+] Author and Article Information
H. E. Lindberg

Aptek, Inc., San Jose, CA 95129

J. Appl. Mech 58(4), 1092-1095 (Dec 01, 1991) (4 pages) doi:10.1115/1.2897690 History: Received September 05, 1989; Revised November 19, 1990; Online March 31, 2008


Comparisons between an unknown-but-bounded imperfection model and a random imperfection model show that for simple pointwise failure measures, at least, the two models give the same expressions for their measures of response, but each measure has a distinctly different interpretation. The former gives the maximum possible response for any imperfection within a specified bound. The latter gives the standard deviation of response, which, together with the statistical distribution, can be used to specify the maximum response at a specified confidence level. However, since the statistical distributions of imperfections, and hence of the response are often unknown, confidence levels are difficult to define, especially in the tail of the distribution at high confidence levels. The unknown-but-bounded model requires less information about the imperfections to come to a well-defined bound on response. It is further shown that, while the maximum possible response might seem to be a severe failure avoidance criterion, it can be less constricting than having to impose artificially high confidence levels with poorly known statistical distributions.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In