0
RESEARCH PAPERS

Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part III—Large-Scale Yielding

[+] Author and Article Information
C. F. Shih, N. P. O’Dowd

Division of Engineering, Brown University, Providence, RI 02912

R. J. Asaro

Department of AMES, University of California-San Diego, La Jolla, CA 92093

J. Appl. Mech 58(2), 450-463 (Jun 01, 1991) (14 pages) doi:10.1115/1.2897206 History: Received July 01, 1989; Revised April 09, 1990; Online March 31, 2008

Abstract

In Parts I and II, the structure of small-scale yielding fields of interface cracks were described in the context of small strain plasticity and J 2 deformation theory. These fields are members of a family parameterized by the plastic phase angle ξ which also determines the shape or phase of the plastic zone. Through full-field analysis, we showed the resemblance between the plane-strain interface crack-tip fields and mixed-mode HRR fields in homogeneous material. This connection was exploited, to the extent possible, inasmuch as the interface fields do not appear to have a separable form. The present investigation is focused on “opening” dominated load states (| ξ | ≤ π/6) and the scope is broadened to include finite ligament plasticity and finite deformation effects on near-tip fields. We adopt a geometrically rigorous formulation of J 2 flow theory taking full account of crack-tip blunting. Our results reveal several surprising effects, that have important implications for fracture, associated with finite ligament plasticity and finite strains. For one thing the fields that develop near bimaterial interfaces are more intense than those in homogeneous material when compared at the same value of J or remote load. For example, the plastic zones, plastic strains, and the crack-tip openings, δt , that evolve near bimaterial interfaces are considerably larger than those that develop in homogeneous materials. The stresses within the finite strain zone are also higher. In addition, a localized zone of high hydrostatic stresses develops near the crack tip but then expands rapidly within the weaker material as the plasticity spreads across the ligament. These stresses can be as much as 30 percent higher than those in homogeneous materials. Thus, the weaker material is subjected to large stresses as well as strains—states which promote ductile fracture processes. At the same time, the accompanying high interfacial stresses can promote interfacial fracture.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In