Dynamic Cylindrical Cavity Expansion of Compressible Strain-Hardening Materials

[+] Author and Article Information
V. K. Luk, D. E. Amos

Sandia National Laboratories, Albuquerque, NM 87185

J. Appl. Mech 58(2), 334-340 (Jun 01, 1991) (7 pages) doi:10.1115/1.2897190 History: Received June 13, 1989; Revised June 20, 1990; Online March 31, 2008


We developed models for the dynamic expansion of cylindrical cavities from zero initial radii for compressible, elastic-plastic, rate-independent materials with powerlaw strain-hardening. Results from cavity-expansion models were used to derive perforation models to predict residual velocities and ballistic limits for rigid, conicalnose projectiles perforating strain-hardening target plates. We compared the numerical results from models for incompressible and compressible materials to show the effect of compressibility. To verify the models, we also compared the model predictions of residual velocities and ballistic limits with the data from terminal-ballistic experiments with tungsten projectiles impacting 5083-H131 aluminum armor plates at normal incidence. Very good agreement was obtained for impact velocities between 200 and 1,200 m/s and 12.7, 50.8, and 76.2-mm thick targets.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In