0
RESEARCH PAPERS

Effects of Crack Surface Heat Conductance on Stress Intensity Factors

[+] Author and Article Information
An-Yu Kuo

Structural Integrity Associates, San Jose, CA 95118

J. Appl. Mech 57(2), 354-358 (Jun 01, 1990) (5 pages) doi:10.1115/1.2891996 History: Revised June 26, 1989; Received July 11, 1989; Online March 31, 2008

Abstract

Effects of crack surface heat conductance on stress intensity factors of modes I, II, and III are investigated. The crack problem is first solved by assuming perfect (infinite) heat conductance at crack surfaces. Finite heat conductance at crack surfaces is then accounted for by imposing a set of distributed dipoles at the crack surfaces. Distribution function of the dipoles is the solution of a Fredholm integral equation. It is shown that, for cracks in a homogeneous, isotropic, linear elastic solid, the degree of thermal conductivity at crack surfaces will affect the magnitude of mode I and mode II stress intensity factors but not mode III stress intensity factor. It is also shown that, for a geometrically symmetric cracked solid, only the mode II stress intensity factor will be influenced by different crack surface heat conductance even if the thermal loading is not symmetric. More importantly, for a given material thermal conductivity (K ) and crack surface heat convection coefficient (h ), effects of crack surface heat conductance on stress intensity factors is found to depend upon crack size. This “size effect” implies that, for a given set of K and h , an extremely small crack can be treated as if the crack surfaces are insulated and a very long crack can be treated as if the crack surfaces are perfectly heat conductive. As an example, the problem of a finite crack in an infinite plate subjected to a constant temperature gradient at infinity is studied.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In