0
RESEARCH PAPERS

The Dynamic Energy Release Rate for a Steadily Propagating Mode I Crack in an Infinite, Linearly Viscoelastic Body

[+] Author and Article Information
J. R. Walton

Department of Mathematics, Texas A&M University, College Station, TX 77843

J. Appl. Mech 57(2), 343-353 (Jun 01, 1990) (11 pages) doi:10.1115/1.2891995 History: Received February 01, 1988; Revised June 20, 1989; Online March 31, 2008

Abstract

An analysis is presented for the dynamic, steady-state propagation of a semi-infinite, mode I crack in an infinite, linearly viscoelastic body. For mathematical convenience, the material is assumed to have a constant Poisson’s ratio, but the shear modulus is only assumed to be decreasing and convex. An expression for the Stress Intensity Factor (SIF) is derived for very general tractions on the crack faces and the Energy Release Rate (ERR) is constructed assuming that a fully developed Barenblatt type failure zone with nonsingular stresses exists at the crack tip and the loadings have a simple exponential form. For comparative purposes, expressions for the ERR are derived for the special cases of dynamic steady-state crack propagation in elastic material and quasi-static crack propagation in viscoelastic material, both with and without a failure zone. Sample calculations are included for power-law material and a standard linear solid in order to illustrate the combined influence of inertial effects, material viscoelasticity, and a failure zone upon the ERR.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In