0
RESEARCH PAPERS

Effects of Lateral Surface Conditions in Time-Harmonic Nonsymmetric Wave Propagation in a Cylinder

[+] Author and Article Information
Yoon Young Kim, Charles R. Steele

Division of Applied Mechanics, Stanford University, Stanford, CA 94305

J. Appl. Mech 56(4), 910-917 (Dec 01, 1989) (8 pages) doi:10.1115/1.3176190 History: Received October 21, 1988; Revised January 18, 1989; Online July 21, 2009

Abstract

The present work is a part of the effort toward the development of an efficient method of solution to handle general nonsymmetric time-harmonic end conditions in a cylinder with a traction-free lateral surface. Previously, Kim and Steele (1989a) develop an approach for the general axisymmetric case, which utilizes the well-known uncoupled wave solutions for a mixed lateral wall condition. For the case of a traction-free lateral wall, the uncoupled wave solutions provide: (1) a convenient set of basis functions and (2) approximations for the relation between end stress and displacement which are asymptotically valid for high mode index numbers. The decay rate with the distance from the end is, however, highly dependent on the lateral wall conditions. The present objective was to demonstrate that the uncoupled solutions of the nonsymmetric waves discussed by Kim (1989), which satisfy certain mixed lateral wall conditions, can be utilized in an analogous manner for the asymptotic analysis of the traction-free case. Results for the end displacement/stress due to various end conditions, computed by the present method and by a more standard collocation method, were compared. The present method was found to reduce the computational effort by orders of magnitude.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In