Nonlinear Composite Beam Theory

[+] Author and Article Information
O. A. Bauchau, C. H. Hong

Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590

J. Appl. Mech 55(1), 156-163 (Mar 01, 1988) (8 pages) doi:10.1115/1.3173622 History: Received April 01, 1987; Revised October 09, 1987; Online July 21, 2009


The modeling of naturally curved and twisted beams undergoing arbitrarily large displacements and rotations, but small strains, is a common problem in numerous engineering applications. This paper has three goals: (1) present a new formulation of this problem which includes transverse shearing deformations, torsional warping effects, and elastic couplings resulting from the use of composite materials, (2) show that the small strain assumption must be applied in a consistent fashion for composite beams, and (3) present some numerical results based on this new formulation to assess its accuracy, and to point out some distinguishing feature of anisotropic beam behavior. First, the predictions of the formulation will be compared with experimental results for the large deflections and rotations of an aluminum beam. Then, the distinguishing features of composite beams that are likely to impact the design of rotating blades (such as helicopter blades) will be discussed. A first type of extension-twisting coupling introduced by the warping behavior of a pretwisted beam is discussed, then, a shearing strain squared term, usually neglected in small strain analyses, is shown to introduce a coupling between axial extension and twisting behavior, that can be significant when the ratio E/G is large (E and G are Young’s and shearing moduli of the beam, respectively). Finally, the impact of inplane shearing modulus changes and torsional warping constraints on the behavior of beams exhibiting elastic couplings is investigated.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In