Scattering by Multiple Crack Configurations

[+] Author and Article Information
Ch. Zhang, J. D. Achenbach

Department of Civil Engineering, Northwestern University, Evanston, IL 60208

J. Appl. Mech 55(1), 104-110 (Mar 01, 1988) (7 pages) doi:10.1115/1.3173614 History: Received April 20, 1987; Revised August 26, 1987; Online July 21, 2009


A system of boundary integral equations is presented which governs the crack-opening displacements for two-crack configurations. The integral equations are highly singular and they cannot be solved directly by numerical methods. By the approach of this paper the higher order singularities are, however, reduced to integrable singularities, and the integral equations are subsequently discretized and solved numerically. For several configurations numerical results have been obtained for scattered fields and for elastodynamic stress intensity factors. The scattered-field results are interpreted to apply for a partially closed crack as well as for two separate but neighboring cracks. The stress-intensity factors are intended to apply only to the case of separate cracks. The scattered-field results have relevance to the problem of detection and characterization of cracks in the field of quantitative nondestructive evaluation.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In