A Nonlinear Analysis of an Equilibrium Craze: Part II—Simulations of Craze and Crack Growth

[+] Author and Article Information
T. Ungsuwarungsri, W. G. Knauss

Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125

J. Appl. Mech 55(1), 52-58 (Mar 01, 1988) (7 pages) doi:10.1115/1.3173660 History: Received July 21, 1986; Revised August 25, 1987; Online July 21, 2009


In this study we investigate the effects of nonlinear fibril behavior on the mechanics of craze and crack growth. The effect of strain-softening cohesive material on crack stability is of particular interest and is examined via a craze and crack model developed in the first part of this work where the formulation and solution of the problem are discussed.1 In this second part, quasi-static growth of a craze with a central crack is analyzed for different nonlinear force-displacement (p-v) relations for the craze fibrils. A “critical crack tip opening displacement” (CTOD), or more precisely, “critical fibril extension” is employed as the criterion for fracture. The p-v relation is further assumed to be invariant with respect to the craze and crack lengths. The results are compared with the Dugdale model; the craze zone size and the energy dissipation rate approach asymptotic values in the limit of long cracks. The problem of craze growth from a precut crack under increasing far-field loading is then studied. In the case where the p-v relation is monotonically softening, the crack can start to grow in an unstable manner before the crack tip opening displacement reaches its critical value.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In