A Cell Mapping Method for Nonlinear Deterministic and Stochastic Systems—Part II: Examples of Application

[+] Author and Article Information
H. M. Chiu, C. S. Hsu

Department of Mechanical Engineering, University of California, Berkeley, California 94720

J. Appl. Mech 53(3), 702-710 (Sep 01, 1986) (9 pages) doi:10.1115/1.3171834 History: Received July 16, 1985; Online July 21, 2009


In this second part of the two-part paper we demonstrate the viability of the compatible simple and generalized cell mapping method by applying it to various deterministic and stochastic problems. First we consider deterministic problems with non-chaotic responses. For this class of problems we show how system responses and domains of attraction can be obtained by a refining procedure of the present method. Then, we consider stochastic problems with stochasticity lying in system parameters or excitation. Next, deterministic systems with chaotic responses are considered. By the present method, finding the statistical responses of such systems under random excitation also presents no difficulties. Some of the systems studied here are well-known. New results are, however, also obtained. These are results on Duffing systems with a stochastic coefficient, the global results of a Duffing system shown in Section 4, the results on strongly nonlinear Duffing systems under random excitations reported in Section 7.2, and the strange attractor results for systems subjected to random excitations.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In